943 resultados para Animal cell culture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ELISA in situ can be used to titrate hepatitis A virus (HAV) particles and real-time polymerase chain reaction (RT-PCR) has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (10(5) copies/mL) (p = 0.0002), while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001). At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hes1, a major target gene in Notch signaling, regulates the fate and differentiation of various cell types in many developmental systems. To gain a novel insight into the role of Hes1 in corneal tissue, we performed gain-of-function and loss-of-function studies. We show that corneal development was severely disturbed in Hes1-null mice. Hes1-null corneas manifested abnormal junctional specialization, cell differentiation, and less cell proliferation ability. Worthy of note, Hes1 is expressed mainly in the corneal epithelial stem/progenitor cells and is not detected in the differentiated corneal epithelial cells. Expression of Hes1 is closely linked with corneal epithelial stem/progenitor cell proliferation activity in vivo. Moreover, forced Hes1 expression inhibits the differentiation of corneal epithelial stem/progenitor cells and maintains these cells' undifferentiated state. Our data provide the first evidence that Hes1 regulates corneal development and the homeostatic function of corneal epithelial stem/progenitor cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na(+) channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. METHODS AND RESULTS Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na(+) current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. CONCLUSION Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na(+) channel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors, PPARalpha, PPARbeta/delta and PPARgamma, are fatty acid activated transcription factors that belong to the nuclear hormone receptor family. While they are best known as transcriptional regulators of lipid and glucose metabolism, evidence has also accumulated for their importance in skin homeostasis. The three PPAR isotypes are expressed in rodent and human skin. Various cell culture and in vivo approaches suggest that PPARalpha contributes to fetal skin development, to epidermal barrier maturation and to sebocyte activity. PPARbeta/delta regulates sebocyte differentiation, promotes hair follicle growth and has pro-differentiating effects in keratinocytes in normal and inflammatory conditions. In contrast, the role of PPARgamma appears to be rather minor in keratinocytes, whereas its activity is required for sebaceous gland differentiation. Importantly, PPARalpha and beta/delta are instrumental in skin repair after an injury, each of them playing specific roles. Due to their collective diverse functions in skin biology, PPARs represent a major research target for the understanding and treatment of many skin diseases, such as benign epidermal tumors, papillomas, acne vulgaris and psoriasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we quantitatively investigated the expression of beta-site amyloid precursor protein cleaving enzyme (BACE) in the entorhinohippocampal and frontal cortex of Alzheimer's disease (AD) and old control subjects. The semiquantitative estimation indicated that the intensity of BACE overall immunoreactivity did not differ significantly between AD and controls, but that a significantly stronger staining was observed in the hippocampal regions CA3-4 compared to other regions in both AD patients and controls. The quantitative estimation confirmed that the number of BACE-positive neuronal profiles was not significantly decreased in AD. However, some degeneration of BACE-positive profiles was attested by the colocalization of neurons expressing BACE and exhibiting neurofibrillary tangles (NFT), as well as by a decrease in the surface area of BACE-positive profiles. In addition, BACE immunocytochemical expression was observed in and around senile plaques (SP), as well as in reactive astrocytes. BACE-immunoreactive astrocytes were localized in the vicinity or close to the plaques and their number was significantly increased in AD entorhinal cortex. The higher amount of beta-amyloid SP and NFT in AD was not correlated with an increase in BACE immunoreactivity. Taken together, these data accent that AD progression does not require an increased neuronal BACE protein level, but suggest an active role of BACE in immunoreactive astrocytes. Moreover, the strong expression in controls and regions less vulnerable to AD puts forward the probable existence of alternate BACE functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Previously we reported on a premature termination mutation in SLC16A12 that leads to dominant juvenile cataract and renal glucosuria. To assess the mutation rate and genotype-phenotype correlations of SLC16A12 in juvenile or age-related forms of cataract, we performed a mutation screen in cataract patients. Methods: Clinical data of approximately 660 patients were collected, genomic DNA was isolated and analyzed. Exons 3 to 8 including flanking intron sequences of SLC16A12 were PCR amplified and DNA sequence was determined. Selected mutations were tested by cell culture assays, in silico analysis and RT-PCR. Results: We found sequence alterations at a rate of approximately 1/75 patients. None of them was found in 360 control alleles. Alterations affect splice site and regulatory region but most mutations caused an amino acid substitution. The majority of the coding region mutations maps to trans-membrane domains. One mutation located to the 5'UTR. It affects translational efficiency of SLC16A12. In addition, we identified a cataract-predisposing SNP in the non-coding region that causes allele-specific splicing of the 5'UTR region. Conclusions: Altered translational efficiency of the solute carrier SLC16A12 and its allele-specific splicing strongly support a model of challenged homeostasis to cause various forms of cataract. In addition, the pathogenic property of the here reported sequence alterations is supported by the lack of known sequence variations within the coding region of SLC16A12. Due to the relatively high mutation rate, we suggest to include SLC16A12 in diagnostic cataract screening. Generally, our data recommend the assessment of regulatory sequences for diagnostic purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful expansion of haematopoietic cells in ex vivo cultures will have important applications in transplantation, gene therapy, immunotherapy and potentially also in the production of non-haematopoietic cell types. Haematopoietic stem cells (HSC), with their capacity to both self-renew and differentiate into all blood lineages, represent the ideal target for expansion protocols. However, human HSC are rare, poorly characterized phenotypically and genotypically, and difficult to test functionally. Defining optimal culture parameters for ex vivo expansion has been a major challenge. We devised a simple and reproducible stroma-free liquid culture system enabling long-term expansion of putative haematopoietic progenitors contained within frozen human fetal liver (FL) crude cell suspensions. Starting from a small number of total nucleated cells, a massive haematopoietic cell expansion, reaching > 1013-fold the input cell number after approximately 300 d of culture, was consistently achieved. Cells with a primitive phenotype were present throughout the culture and also underwent a continuous expansion. Moreover, the capacity for multilineage lymphomyeloid differentiation, as well as the recloning capacity of primitive myeloid progenitors, was maintained in culture. With its better proliferative potential as compared with adult sources, FL represents a promising alternative source of HSC and the culture system described here should be useful for clinical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé Le cancer du sein est le cancer le plus commun chez les femmes et est responsable de presque 30% de tous les nouveaux cas de cancer en Europe. On estime le nombre de décès liés au cancer du sein en Europe est à plus de 130.000 par an. Ces chiffres expliquent l'impact social considérable de cette maladie. Les objectifs de cette thèse étaient: (1) d'identifier les prédispositions et les mécanismes biologiques responsables de l'établissement des sous-types spécifiques de cancer du sein; (2) les valider dans un modèle ín vivo "humain-dans-souris"; et (3) de développer des traitements spécifiques à chaque sous-type de cancer du sein identifiés. Le premier objectif a été atteint par l'intermédiaire de l'analyse des données d'expression de gènes des tumeurs, produite dans notre laboratoire. Les données obtenues par puces à ADN ont été produites à partir de 49 biopsies des tumeurs du sein provenant des patientes participant dans l'essai clinique EORTC 10994/BIG00-01. Les données étaient très riches en information et m'ont permis de valider des données précédentes des autres études d'expression des gènes dans des tumeurs du sein. De plus, cette analyse m'a permis d'identifier un nouveau sous-type biologique de cancer du sein. Dans la première partie de la thèse, je décris I identification des tumeurs apocrines du sein par l'analyse des puces à ADN et les implications potentielles de cette découverte pour les applications cliniques. Le deuxième objectif a été atteint par l'établissement d'un modèle de cancer du sein humain, basé sur des cellules épithéliales mammaires humaines primaires (HMECs) dérivées de réductions mammaires. J'ai choisi d'adapter un système de culture des cellules en suspension basé sur des mammosphères précédemment décrit et pat décidé d'exprimer des gènes en utilisant des lentivirus. Dans la deuxième partie de ma thèse je décris l'établissement d'un système de culture cellulaire qui permet la transformation quantitative des HMECs. Par la suite, j'ai établi un modèle de xénogreffe dans les souris immunodéficientes NOD/SCID, qui permet de modéliser la maladie humaine chez la souris. Dans la troisième partie de ma thèse je décris et je discute les résultats que j'ai obtenus en établissant un modèle estrogène-dépendant de cancer du sein par transformation quantitative des HMECs avec des gènes définis, identifiés par analyse de données d'expression des gènes dans le cancer du sein. Les cellules transformées dans notre modèle étaient estrogène-dépendantes pour la croissance, diploïdes et génétiquement normales même après la culture cellulaire in vitro prolongée. Les cellules formaient des tumeurs dans notre modèle de xénogreffe et constituaient des métastases péritonéales disséminées et du foie. Afin d'atteindre le troisième objectif de ma thèse, j'ai défini et examiné des stratégies de traitement qui permettent réduire les tumeurs et les métastases. J'ai produit un modèle de cancer du sein génétiquement défini et positif pour le récepteur de l'estrogène qui permet de modéliser le cancer du sein estrogène-dépendant humain chez la souris. Ce modèle permet l'étude des mécanismes impliqués dans la formation des tumeurs et des métastases. Abstract Breast cancer is the most common cancer in women and accounts for nearly 30% of all new cancer cases in Europe. The number of deaths from breast cancer in Europe is estimated to be over 130,000 each year, implying the social impact of the disease. The goals of this thesis were first, to identify biological features and mechanisms --responsible for the establishment of specific breast cancer subtypes, second to validate them in a human-in-mouse in vivo model and third to develop specific treatments for identified breast cancer subtypes. The first objective was achieved via the analysis of tumour gene expression data produced in our lab. The microarray data were generated from 49 breast tumour biopsies that were collected from patients enrolled in the clinical trial EORTC 10994/BIG00-01. The data set was very rich in information and allowed me to validate data of previous breast cancer gene expression studies and to identify biological features of a novel breast cancer subtype. In the first part of the thesis I focus on the identification of molecular apacrine breast tumours by microarray analysis and the potential imptìcation of this finding for the clinics. The second objective was attained by the production of a human breast cancer model system based on primary human mammary epithelial cells {HMECs) derived from reduction mammoplasties. I have chosen to adopt a previously described suspension culture system based on mammospheres and expressed selected target genes using lentiviral expression constructs. In the second part of my thesis I mainly focus on the establishment of a cell culture system allowing for quantitative transformation of HMECs. I then established a xenograft model in immunodeficient NOD/SCID mice, allowing to model human disease in a mouse. In the third part of my thesis I describe and discuss the results that I obtained while establishing an oestrogen-dependent model of breast cancer by quantitative transformation of HMECs with defined genes identified after breast cancer gene expression data analysis. The transformed cells in our model are oestrogen-dependent for growth; remain diploid and genetically normal even after prolonged cell culture in vitro. The cells farm tumours and form disseminated peritoneal and liver metastases in our xenograft model. Along the lines of the third objective of my thesis I defined and tested treatment schemes allowing reducing tumours and metastases. I have generated a genetically defined model of oestrogen receptor alpha positive human breast cancer that allows to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasis.