966 resultados para Angiotensin-converting enzyme activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p&lt;0.05), IL-1beta-induced apoptosis (p&lt;0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Interleukin-1beta (IL-1beta) is a potent inflammatory cytokine, which is implicated in acute and chronic inflammatory disorders. The activity of IL-1beta is regulated by the proteolytic cleavage of its inactive precursor resulting in the mature, bioactive form of the cytokine. Cleavage of the IL-1beta precursor is performed by the cysteine protease caspase-1, which is activated within protein complexes termed 'inflammasomes'. To date, four distinct inflammasomes have been described, based on different core receptors capable of initiating complex formation. Both the host and invading pathogens need to control IL-1beta production and this can be achieved by regulating inflammasome activity. However, we have, as yet, little understanding of the mechanisms of this regulation. In particular the negative feedbacks, which are critical for the host to limit collateral damage of the inflammatory response, remain largely unexplored. Recent exciting findings in this field have given us an insight into the potential of this research area in terms of opening up new therapeutic avenues for inflammatory disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of losartan, an AT1-receptor blocker, and ramipril, a converting enzyme inhibitor, on the pressor response induced by angiotensin II (ANG II) and carbachol (a cholinergic receptor agonist). Male Holtzman rats (250-300 g) with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The injection of losartan (50 nmol/1 &micro;l) into the LV blocked the pressor response induced by ANG II (12 ng/1 &micro;l) and carbachol (2 nmol/1 &micro;l). After injection of ANG II and carbachol into the LV, mean arterial pressure (MAP) increased to 31 &plusmn; 1 and 28 &plusmn; 2 mmHg, respectively. Previous injection of losartan abolished the increase in MAP induced by ANG II and carbachol into the LV (2 &plusmn; 1 and 5 &plusmn; 2 mmHg, respectively). The injection of ramipril (12 ng/1 &micro;l) prior to carbachol blocked the pressor effect of carbachol to 7 &plusmn; 3 mmHg. These results suggest an interaction between central cholinergic pathways and the angiotensinergic system in the regulation of arterial blood pressure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumers’ increasing awareness of healthiness and sustainability of food presents a great challenge to food industry to develop healthier, biologically active and sustainable food products. Bioactive peptides derived from food proteins are known to possess various biological activities. Among the activities, the most widely studied are antioxidant activities and angiotensin I converting enzyme (ACE) inhibitory activity related to blood pressure regulation and antihypertensive effects. Meanwhile, vast amounts of byproducts with high protein content are produced in food industry, for example potato and rapeseed industries. The utilization of these by-products could be enhanced by using them as a raw material for bioactive peptides. The objective of the present study was to investigate the production of bioactive peptides with ACE inhibitory and antioxidant properties from rapeseed and potato proteins. Enzymatic hydrolysis and fermentation were utilized for peptide production, ultrafiltration and solid-phase extraction were used to concentrate the active peptides, the peptides were fractionated with liquid chromatographic processes, and the peptides with the highest ACE inhibitory capacities were putified and analyzed with Maldi-Tof/Tof to identify the active peptide sequences. The bioavailability of the ACE inhibitory peptides was elucidated with an in vitro digestion model and the antihypertensive effects in vivo of rapeseed peptide concentrates were investigated with a preventive premise in 2K1C rats. The results showed that rapeseed and potato proteins are rich sources of ACE inhibitory and antioxidant peptides. Enzymatic hydrolysis released the peptides effectively whereas fermentation produced lower activities.The native enzymes of potato were also able to release ACE inhibitory peptides from potato proteins without the addition of exogenous enzymes. The rapeseed peptide concentrate was capable of preventing the development of hypertension in vivo in 2K1C rats, but the quality of rapeseed meal used as raw material was found to affect considerably the antihypertensive effects and the composition of the peptide fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the acute effect of the intraperitoneal (ip) administration of a whey protein hydrolysate (WPH) on systolic arterial blood pressure (SBP) and renal sodium handling by conscious spontaneously hypertensive rats (SHR). The ip administration of WPH in a volume of 1 ml dose-dependently lowered the SBP in SHR 2 h after administration at doses of 0.5 g/kg (0.15 M NaCl: 188.5 ± 9.3 mmHg vs WPH: 176.6 ± 4.9 mmHg, N = 8, P = 0.001) and 1.0 g/kg (0.15 M NaCl: 188.5 ± 9.3 mmHg vs WPH: 163.8 ± 5.9 mmHg, N = 8, P = 0.0018). Creatinine clearance decreased significantly (P = 0.0084) in the WPH-treated group (326 ± 67 µL min-1 100 g body weight-1) compared to 0.15 M NaCl-treated (890 ± 26 µL min-1 100 g body weight-1) and captopril-treated (903 ± 72 µL min-1 100 g body weight-1) rats. The ip administration of 1.0 g WPH/kg also decreased fractional sodium excretion to 0.021 ± 0.019% compared to 0.126 ± 0.041 and 0.66 ± 0.015% in 0.15 M NaCl and captopril-treated rats, respectively (P = 0.033). Similarly, the fractional potassium excretion in WPH-treated rats (0.25 ± 0.05%) was significantly lower (P = 0.0063) than in control (0.91 ± 0.15%) and captopril-treated rats (1.24 ± 0.30%), respectively. The present study shows a decreased SBP in SHR after the administration of WPH associated with a rise in tubule sodium reabsorption despite an angiotensin I-converting enzyme (ACE)-inhibiting in vitro activity (IC50 = 0.68 mg/mL). The present findings suggest a pathway involving ACE inhibition but measurements of plasma ACE activity and angiotensin II levels are needed to support this suggestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS). Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C) hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight) divided into 2K1C (N = 19) and sham-operated (N = 19) groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9) was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5) or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5), which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phaseolus lunatus protein concentrates and the proteases Alcalase(R) and Pepsin-Pancreatin were used for the production of protein hydrolysates that inhibit angiotensin-I converting enzyme (ACE). Protein concentrate obtained from germinated and ungerminated seeds flour was hydrolyzed with Alcalase(R) at enzyme/substrate ratio (E/S) 1/10 and during 0.5 and 2.0 h, respectively. On the other hand, protein concentrate obtained from ungerminated (E/S: 1/10) and germinated (E/S: 1/50) seeds flour was sequentially hydrolyzed with Pepsin-Pancreatin during 1.0 and 3.0 h, respectively. Peptide fractions with ACE inhibitory activity in a range of 0.9 to 3.8 µg/mL were obtained by G-50 gel filtration chromatography and high- performance liquid chromatography C18 reverse phase chromatography. The observed amino acid composition suggests a substantial contribution of hydrophobic residues to the peptides’ inhibitory potency, which potentially acts via blocking of angiotensin II production. These results show that P. lunatus seed proteins are a potential source of ACE inhibitory peptides when hydrolyzed with Alcalase(R) and Pepsin-Pancreatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potent angiotensin l-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of beta-lactoglobulin (beta Lg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to beta Lg f(36-42) and had an IC50 value of 8 mu m, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine beta Lg reported so far. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potent angiotensin I-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of β-lactoglobulin (βLg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to βLg f(36–42) and had an IC50 value of 8 μm, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine βLg reported so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High ionic calcium concentration and the absence of caseinmacropeptides (CMP) in acid whey could influence the production of angiotensin-I-converting enzyme (ACE)-inhibitory hydrolysate and its bioactivity through the application of the integrative process. Therefore, the aim of the present study was to produce a hydrolysate from acid whey applying the integrative process. Process performance was evaluated based on protein adsorption capacity and conversion in relation to ACE-inhibitory activity (ACEi%) and ionic calcium concentration. Hydrolysates with high potency of their biological activity were produced (IC50 = 206-353 μg mL-1). High ionic calcium concentration in acid whey contributed to ACE-inhibitory activity. However, low β-lactoglobulin adsorption and conversion was observed. Optimisation of the resin volume increased the adsorption of β-lactoglobulin significantly but with lower selectivity. The changes in conversion value were not significant even at higher concentration of enzyme. Several ACE inhibitors derived from β-lactoglobulin that were identified before in sweet whey hydrolysates such as, IIAEKT, IIAE, IVTQ, LIVTQ, LIVTQT, LDAQ and LIVT were found. New peptides such as, SNICNI and ECCHGD derived from α-lactalbumin and BSA respectively were identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT(1)R), the type 2 receptor (AT(2)R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT(1)R and AT(2)R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT(2)R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T(4), 0.1 mg/kg BW/day, i.p.), with or without AT(2)R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT(2)R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT(2)R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT(2) blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT(2)R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracts and decoctions of Eugenia jambolana Lam., Eugenia uniflora L., and Eugenia punicifolia (Humb., Bonpl. & Kunt) DC. are used in traditional medicine to treat diabetes mellitus. Although there have been reports that Eugenia jambolana and Eugenia uniflora have antidiabetic effects, no study has yet been made on Eugenia punicifolia . We investigated the effects of aqueous, butanol, and methanol extracts of Eugenia punicifolia leaves administered by gavage to streptozotocin-diabetic rats for 26 to 29 days. Body weight, food and fluid intake, urine volume, and urinary glucose and urea were evaluated every 7 days. At the end of the experiment, we measured serum cholesterol, high-density lipoprotein (HDL)-cholesterol, triglycerides and bilirubin, hepatic glycogen and serum marker-enzymes (alanine and aspartate aminotransferases, alkaline phosphatase, gamma-glutamyltransferase, L-lactate dehydrogenase, creatine kinase, alpha-amylase, and angiotensin I converting enzyme). We found that in rats treated with the aqueous extracts, food and liquid intake, urinary volume, and body weight were all reduced, while for rats treated with the methanol extract, not only were liquid intake, urinary volume and body weight reduced, but urinary glucose and urea also decreased. Rats treated with the butanol extract showed no significant alterations in any of the parameters measured. Chronic treatment with extracts had no effect on the marker enzymes nor on serum bilirubin levels. The results indicate that aqueous extracts of Eugenia punicifolia leaves produced an anorexic effect and that methanol extracts had a beneficial effect on the diabetic state by improving carbohydrate and protein metabolism without provoking hepatobiliary, microvascular, muscular, or pancreatic toxic effects.