946 resultados para Ames assay
Resumo:
We report the development of a colourimetric PCR/dot blot assay targeting the mitochondrial gene NADH dehydrogenase subunit 1 (nad1) for differential diagnosis of taeniid eggs. Partial sequences of the cestode nad1 gene were aligned and new primers were designed based on conserved regions. Species-specific oligonucleotide probes (S-SONP) for canine taeniid cestodes were then designed manually based on the variable region between the conserved primers. Specifically, S-SONP were designed for the Taenia crassiceps, T. hydatigena, T. multiceps, T. ovis, T. taeniaeformis, Echinococcus granulosus (genotype 1), E. multilocularis and E. vogeli. Each probe showed high specificity as no cross-hybridisation with any amplified nad1 fragment was observed. We evaluated the assay using 49 taeniid egg-positive samples collected from dogs in Zambia. DNA from 5 to 10 eggs was extracted in each sample. Using the PCR/dot blot assay, the probes successfully detected PCR products from T. hydatigena in 42 samples, T. multiceps in 3 samples, and both species (mixed infection) in the remaining 4 samples. The results indicate that the PCR/dot blot assay is a reliable alternative for differential diagnosis of taeniid eggs in faecal samples.
Resumo:
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.
Resumo:
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Resumo:
An indirect enzyme-linked immunosorbent assay (ELISA) was modified and validated to detect antibodies against Salmonella Abortusovis in naturally infected sheep. The ELISA was validated with 44 positive and 45 negative control serum samples. Compared with the immunoblot, the sensitivity and specificity of the assay were 98% and 100%, respectively. To follow antibody levels over time, samples from 12 infected ewes were collected at 1, 3, and 10 months after abortion. All animals showed antibody levels above the cutoff value throughout the observation period. One and 3 months after abortion, high antibody levels could be detected in all but one animal, whereas after 10 months, 9 animals had markedly lower but still positive antibody levels. The test characteristics and evidence for the persistence of detectable antibody levels in all infected animals for up to 10 months indicates that the ELISA can be used for herd surveillance testing.
Resumo:
OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.
Resumo:
Two alpacas from a herd in southwest Switzerland died for unknown reasons. Necropsy revealed chronic weight loss and pale mucous membranes. Infection with hemotropic mycoplasmas was suspected and subsequently confirmed by molecular methods. In order to investigate the epidemiological situation in this herd, a real-time TaqMan((R)) qPCR assay for the specific detection and quantification of hemoplasma infection in South American camelids was developed. This assay was based on the 16S rRNA gene and amplified 'Candidatus Mycoplasma haemolamae' DNA, but not DNA from other hemoplasmas or non-hemotropic mycoplasma species. The lower detection limit was one copy/PCR, and the amplification efficiency was 97.4%. In 11 out of 24 clinically healthy herd mates of the two infected alpacas, 'Candidatus M. haemolamae' infection was confirmed. No correlation was found between bacterial load and clinical signs or anemia. The assay described herein enables to detect and quantify 'Candidatus M. haemolamae' and may be used in future studies to investigate the prevalence, pathogenesis and treatment follow-up of hemoplasma infections in South American camelids.
Resumo:
Chemotherapeutic use of 5-fluorouracil (5FU) is compromised by 10-20% of patients developing severe toxicity. Recently described genetic variation in dihydropyrimidine dehydrogenase (DPYD) has been shown to be a major predictor of 5FU toxicity. Here, we describe a new genotyping assay for routine clinical use that covers all the major DPYD risk variants.
Resumo:
The scintillation proximity assay (SPA) is a rapid radioligand binding assay. Upon binding of radioactively labeled ligands (here L-[(3)H]arginine or D-[(3)H]glucose) to acceptor proteins immobilized on fluoromicrospheres (containing the scintillant), a light signal is stimulated and measured. The application of SPA to purified, detergent-solubilized membrane transport proteins allows substrate-binding properties to be assessed (e.g., substrate specificity and affinity), usually within 1 d. Notably, the SPA makes it possible to study specific transporters without interference from other cellular components, such as endogenous transporters. Reconstitution of the target transporter into proteoliposomes is not required. The SPA procedure allows high sample throughput and simple sample handling without the need for washing or separation steps: components are mixed in one well and the signal is measured directly after incubation. Therefore, the SPA is an excellent tool for high-throughput screening experiments, e.g., to search for substrates and inhibitors, and it has also recently become an attractive tool for drug discovery.
Resumo:
The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE-receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring the IgE-receptor interaction. The TR-FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR-FRET assay can also be used to follow the kinetics of IgE-Fc-FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR-FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
In this work electrophoretically mediated micro-analysis (EMMA) is used in conjunction with short end injection to improve the in-capillary Jaffé assay for creatinine. Key advances over prior work include (i) using simulation to ensure intimate overlap of reagent plugs, (ii) using OH- to drive the reaction, (iii) using short-end injection to minimize analysis time and in-line product degradation. The potential-driven overlapping time with the EMMA approach, as well as the borate buffer background electrolyte (BGE) concentration and pH are optimized with the short end approach. The best conditions for short-end analyses would not have been predicted by the prior long end work, owing to a complex interplay of separation time and product degradation rates. Raw peak areas and flow-adjusted peak areas for the Jaffé reaction product (at 505 nm) are used to assess the sensitivity of the short-end EMMA approach. Optimal overlap conditions depend heavily on local conductivity differences within the reagent zone(s), as these differences cause dramatic voltage field differences, which effect reagent overlap dynamics. Simul 5.0, a dynamic simulation program for capillary electrophoresis (CE) systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analysis. Overall, fast migration of hydroxide ions from the picrate zone makes difficult reagent overlap. In addition, the challenges associated with the simultaneous overlapping of three reagent zones are considered, and experimental results validate the predictions made by the simulation. With one set of “optimized” conditions including OH- (253 mM) as the third reagent zone the response was linear with creatinine concentration (R2 = 0.998) and reproducible over the clinically relevant range (0.08 to 0.1 mM) of standard creatinine concentrations. An LOD (S/N = 3) of 0.02 mM and LOQ (S/N=10) of 0.08 mM were determined. A significant improvement (43%) in assay sensitivity was obtained compared to prior work that considered only two reagents in the overlap.
Resumo:
A major challenge in basic research into homeopathic potentisation is to develop bioassays that yield consistent results. We evaluated the potential of a seedling-biocrystallisation method. Cress seeds (Lepidium sativum L.) germinated and grew for 4 days in vitro in Stannum metallicum 30x or water 30x in blinded and randomized assignment. 15 experiments were performed at two laboratories. CuCl2-biocrystallisation of seedlings extracted in the homeopathic preparations was performed on circular glass plates. Resulting biocrystallograms were analysed by computerized textural image analysis. All texture analysis variables analysed yielded significant results for the homeopathic treatment; thus the texture of the biocrystallograms of homeopathically treated cress exhibited specific characteristics. Two texture analysis variables yielded differences between the internal replicates, most probably due to a processing order effect. There were only minor differences between the results of the two laboratories. The biocrystallisation method seems to be a promising complementary outcome measure for plant bioassays investigating effects of homeopathic preparations.