913 resultados para Amazon metric
Resumo:
PURPOSE The aim of this work is to derive a theoretical framework for quantitative noise and temporal fidelity analysis of time-resolved k-space-based parallel imaging methods. THEORY An analytical formalism of noise distribution is derived extending the existing g-factor formulation for nontime-resolved generalized autocalibrating partially parallel acquisition (GRAPPA) to time-resolved k-space-based methods. The noise analysis considers temporal noise correlations and is further accompanied by a temporal filtering analysis. METHODS All methods are derived and presented for k-t-GRAPPA and PEAK-GRAPPA. A sliding window reconstruction and nontime-resolved GRAPPA are taken as a reference. Statistical validation is based on series of pseudoreplica images. The analysis is demonstrated on a short-axis cardiac CINE dataset. RESULTS The superior signal-to-noise performance of time-resolved over nontime-resolved parallel imaging methods at the expense of temporal frequency filtering is analytically confirmed. Further, different temporal frequency filter characteristics of k-t-GRAPPA, PEAK-GRAPPA, and sliding window are revealed. CONCLUSION The proposed analysis of noise behavior and temporal fidelity establishes a theoretical basis for a quantitative evaluation of time-resolved reconstruction methods. Therefore, the presented theory allows for comparison between time-resolved parallel imaging methods and also nontime-resolved methods. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
Only few studies documenting the vegetation history of the Llanos de Moxos, one of the largest seasonally flooded wetland areas in South America, are available and little is known about the environmental impact of pre-Columbian settlements. We use radiocarbon-dated terrestrial plant macrofossils to establish a sound chronology and palynological analyses to reconstruct the vegetation and fire history of the Lago Rogaguado area. The sedimentary pollen and spore record suggests that wetland and wooded savannah (Cerrado) environments occurred around the lake between 8100 and 5800 cal BP. Fire activity was high during this period and was probably connected to the dry Cerrado environments. The pollen evidence suggests early plant cultivation (Zea mays, Annonaceae and Cucurbitaceae) from 6500 cal BP onwards, which is significantly earlier than hitherto assumed for Amazonia. Gallery forests expanded after 5800 cal BP, when fire activity strongly declined. Forest expansion intensified around 2800 cal BP and continued until 2000 cal BP, when forest cover reached its maximum and fire activity its minimum. The late-Holocene forest expansion to the south and the decrease of fire activity may have resulted from a climatic shift to moister conditions (possibly a shorter dry season). New crops (e.g. Avena-type) or adventive plants (e.g. Rumex acetosella-type) document the impact of European economies after ca. 500 cal BP. Land use intensity remained rather stable over the most recent centuries, arguing against a collapse of settlements in response to the arrival of Europeans, as reconstructed from other Amazonian pollen records.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
Marine endosymbiotic heterocystous cyanobacteria make unique heterocyst glycolipids (HGs) containing pentose (C5) moieties. Functionally similar HGs with hexose (C6) moieties found in free-living cyanobacteria occur in the sedimentary record, but C5 HGs have not been documented in the natural environment. Here we developed a high performance liquid chromatography multiple reaction monitoring (MRM) mass spectrometry (HPLC-MS2) method specific for trace analysis of long chain C5HGs and applied it to cultures of Rhizosolenia clevei Ostenfeld and its symbiont Richelia intracellularis which were found to contain C5 HGs and no C6 HGs. The method was then applied to suspended particulate matter (SPM) and surface sediment from the Amazon plume region known to harbor marine diatoms carrying heterocystous cyanobacteria as endosymbionts. C5 HGs were detected in both marine SPM and surface sediments, but not in SPM or surface sediment from freshwater settings in the Amazon basin. Rather, the latter contained C6 HGs, established biomarkers for free-living heterocystous cyanobacteria. Our results indicate that the C5 HGs may be potential biomarkers for marine endosymbiotic heterocystous cyanobacteria.
Resumo:
We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80-230 µg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8-0.9), but lower and more variable soil-marker BHP concentration (40-100 µg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3-4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.