979 resultados para Alpha-thrombin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous structure-activity studies have shown that the disulphide bridge of calcitonin gene-related peptide (CGRP) is important for the highly potent, CGRP receptor-mediated effects of this peptide. In this study penicillamine (Pen) was substituted for one or both of the cysteinyl residues to determine conformational and topographical properties of the disulphide bridge favourable for binding to CGRP receptors and/or receptor activation. Pen constrains the conformational flexibility of disulphide bridges in other peptides. Binding affinities were measured using a radioligand binding assay with membranes prepared from pig coronary arteries and I-125-h-alpha-CGRP. Functional effects were characterized using a previously reported pig coronary artery relaxation bioassay. The binding affinity of [Pen(2)]h-alpha-CGRP was not significantly different from that of h-alpha-CGRP. All other analogues showed reduced affinity for CGRP receptors. [Pen(2)]h-alpha-CGRP also caused relaxation of coronary arteries. The remaining analogues either caused relaxation with significantly reduced potency or failed to relax the arteries at concentrations up to 1 x 10(-5) M. All analogues that did not relax coronary arteries contained a D-Pen in position 7 and inhibited CGRP-induced relaxation. [D-Pen(2,7)]h-alpha- CGRP was the most potent antagonist with a K-B value of 630 nM. This affinity is similar to that of the classical CGRP receptor antagonist, h-alpha-CGRP(8-37), on these arteries (K-B, 212 nM). These studies show that modifying the topography of the disulphide bridge can cause large and variable effects on ligand binding and activation of CGRP receptors. The contribution of position 7 to the conformation and topography of the disulphide bridge of h-alpha-CGRP is crucial to the future design of agonists of CGRP receptors. Furthermore, position 7 is important for the development of new CGRP receptor antagonists with structures based on the whole sequence of h-alpha-CGRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structure-activity study was performed to examine the role of position 14 of human alpha-calcitonin gene-related peptide (h-alpha-CGRP) in activating the CGRP receptor. Interestingly, position 14 of h-alpha-CGRP contains a glycyl residue and is part of an alpha-helix spanning residues 8-18. Analogues [Ala(14)]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, [Asn(14)]-h-alpha-CGRP, and [Pro(14)]-h-alpha-CGRP were synthesized by solid phase peptide methodology and purified by RP-HPLC. Secondary structure was measured by circular dichroism spectroscopy. Agonist activities were determined as the analogues' ability to stimulate amylase secretion from guinea pig pancreatic acini and to relax precontracted porcine coronary arteries. Analogues [Ala(1)4]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, and [Asn(14)]-h-alpha-CGRP, all containing residues with a high helical propensity in position 14, were potent full agonists compared to h-alpha-CGRP in both tissues. Interestingly, replacement of Gly(14) of h-alpha-CGRP with these residues did not substantially increase the helical content of these analogues. [Pro(14)]-h-alpha-CGRP, predictably, has significantly lower helical content and is a 20-fold less potent agonist on coronary artery, known to contain CGRP-1 receptor subtypes, and an antagonist on pancreatic acini, known to contain CGRP-2 receptor subtypes. In conclusion, the residue in position 14 plays a structural role in stabilizing the alpha-helix spanning residues 8-18. The alpha-helix is crucial for maintaining highly potent agonist effects of h-alpha-CGRP at CGRP receptors. The wide variety of functional groups that can be tolerated in position 14 with no substantial modification of agonist effects suggests the residue in this position is not in contact with the CGRP receptor. [Pro(14)]-h-alpha-CGRP may be a useful pharmacological tool to distinguish between CGRP-1 and CGRP-2 receptor subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha-1 antitrypsin (A1AT) is a serine anti-protease produced chiefly by the liver. A1AT deficiency is a genetic disorder characterized by serum levels of less than 11 μmol/L and is associated with liver and lung manifestations. The liver disease, which occurs in up to 15% of A1AT-deficient individuals, is a result of toxic gain-of-function mutations in the A1AT gene, which cause the A1AT protein to fold aberrantly and accumulate in the endoplasmic reticulum of hepatocytes. The lung disease is associated with loss-of-function, specifically decreased anti-protease protection on the airway epithelial surface. The so-called 'Z' mutation in A1AT deficiency encodes a glutamic acid-to-lysine substitution at position 342 in A1AT and is the most common A1AT allele associated with disease. Here we review the current understanding of the molecular pathogenesis of A1AT deficiency and the best clinical management protocols. © Springer Science+Business Media B.V. 2008.