962 resultados para Airplanes -- Scramjet engines
Resumo:
This paper presents alternatives for waste energy recovery from the sewage of cities. Through a review of the literature it is observed that the technologies studied are usually turbines, microturbines, and engines adapted to the use of biogas. For project design analyzes the technologies found in some sewage treatment plants in Brazil and the world, compared with those found in the literature. With this study it can be concluded that the most used technologies are microturbines and motor generator sets, which are already implemented in some locations in the USA, Europe and even Brazil. It can also be concluded that the energy recovery of waste from sewage can enable design of wastewater treatment plants thereby contributing to improved quality of life
Resumo:
In a combustion process involving fossil fuels, there is the formation of species Chemiluminescent, especially CH*, C2* and OH*, whose spontaneous emission can be used as a diagnostic tool. In the present work, mapping and determination of the rotational temperature of the species CH* produced in flames on a burner fueled by Liquefied Petroleum Gas (LPG) was carried out. This study is part of a project involving the characterization of supersonic combustion in scramjets engines, whose study has been conducted in the hypersonic shock tunnel IEAv laboratories. The technique used was the natural emission spectroscopy, which has as main advantage of being non-intrusive. The rotational temperature determination was made using the Boltzmann method, whose principle is to relate the emission intensity of the species to the temperature by means of spectroscopic constants established.The temperature values were determined from the analysis of electronic bands AX and BX of the radical CH*. In order to confirm the results of flame temperatures obtained by the natural emission technique, was also used the technique of line reversal sodium. The results of both techniques showed that the temperature of the flames investigated is about 2500K a 2700K
Resumo:
This paper deals with static analysis and dynamic stress of an ensemble crank and crankshaft, contained within a combustion engine of 4 cylinders. Aimed to illustrate procedures for computer-aided analysis having as goal the optimization of components according to the need for the market demand. Thus, to work in static and dynamic analyzes were summarized the basic theory involved in the calculations and analyzes necessary actuation forces and held a brief introduction about the manufacturing process and forging. Subsequently, it was applied with the use of software in a case the crankshaft, to obtain the performance and structural dynamic thereof. There was a conservative result and critical points in the fillet of the crankshaft bearing, as well as for lubrication hole. It was concluded that there are possibilities for improvements in the manufacturing process and design optimization in order to provide lower criticality and a more robust part
Resumo:
The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field
Resumo:
This work was done a study to develop a model for definition of hours assembling planes, that were able to meet both the most complete plane, i.e. with the highest number of mounts but also that do not generate an idleness on the line when a plane less complex passing on the Assembly line. The proposed model has great advantages over the current model that the company has been using, as for example: leftover hand-to-hand for assembling airplanes only 10% than the current model raises and an expense to pay the human resource/time of only 6.7% compared with the current model at the company
Resumo:
Nowadays, the automotive industry is working to optimize the design of engines, in order to reduce the fuel consumption with acceptable efficiency ratio. This undergraduate thesis is aimed at perform a kinematic/dynamic analysis of a slider-crank mechanism that is part of a four stroke internal combustion engine, the same engine that was used in the analysis described by Montazersadhd and Fatemi (2007). Two algorithms were developed based on Kane’s method to calculate velocities and accelerations of the mechanism bodies, and provide the acting forces at connecting rod joints. A SimMechanics model was developed to simulate the engine, and monitoring the same parameters that were calculated with the algorithms. The results obtained with both approaches were satisfactory and showed good agreement with the values provided by Montazersadhd and Fatemi (2007). The obtained results showed that the axial component of the rod joint efforts was caused by the pressure exerted on the piston head,whereas the radial component was related with the action of inertia loads. Besides, this thesis presents a connecting rod assembly mesh that is going to be used for static and fatigue finite element analysis in the future
Resumo:
In the industries of wood processing (sawmills), where timber is sawn in equipment such as band saws, circular saws, trowel, thicknessers, among others, that mechanically transform this resource and use of electric motors, which are not unusually poorly scaled working or overloaded, often a factor that is not found in these industries and has fundamental importance in the production process is energy efficiency that is achieved by both technological innovation and through all the practices and policies that aim to lower energy consumption, lowering energy costs and increasing the amount of energy offered no change in generation. For both during the design of an electrical installation, both overall and in various sectors of the installation, investigations are necessary, considerations and uses of variables and factors that put into practice the theme of energy efficiency. Therefore, in this paper, these factors were calculated and analyzed for a wood processing industry (sawmill) in the municipality of Taquarivaí - SP, namely: active power, power factor, demand factor and load factor. Where they were small in relation to the literature, these events that occur when devices are connected at the same time and due to the conditions of processing the wood, where the engines have large variations in electricity consumption during the unfolding of the same, due to efforts with the load and idle moments between each machining operation in the equipment
Resumo:
Atualmente, atender as necessidades dos consumidores é uma das metas mais importantes, os consumidores estão em busca de produtos com qualidade e preços mais acessíveis, para isso, é indispensável que as empresas se atualizem para melhorar seus produtos e serviços. Com este cenário, as superligas estão cada vez mais ganhando mercado, pois possuem ótimas propriedades, principalmente em relação a operar em temperaturas elevadas, podendo proporcionar maior eficiência para motores que necessitam trabalhar em altas temperaturas. Em contra partida a essa vantagem, as superligas possuem uma baixa usinabilidade, sendo importante a análise do processo de usinagem para se tornarem mais aplicáveis. Este trabalho visa à otimização do processo de torneamento cilíndrico da superliga Nimonic 80A, com o intuito de melhorar a qualidade do produto, utilizando o Método de Taguchi, com o arranjo ortogonal L16, sendo o comprimento de corte definido como variável resposta e analisados seis fatores que poderiam influenciar na sua variação, tais fatores são: velocidade de corte, avanço, profundidade de corte, tipo de pastilha, lubrificação e dureza do material. Os resultados obtidos demonstraram que os fatores avanço, tipo de pastilha e lubrificação são significativos e exercem influencia no processo, sendo que o avanço deve ser ajustado no nível de 0,12 mm/rev, a pastilha a ser utilizada deve ser CP250 e a lubrificação deve ser feita de maneira abundante, para a otimização do processo. Com a análise dos resultados, também podemos observar a eficiência e confiabilidade do método utilizado, mostrando resultados coerentes
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
The present literature review aimed to describe biodisel’s physicochemical properties obtained from different raw materials. Were studied data concerning viscosity, density, cetane number, fl ash point, pour point and calorifi c power of biodiesel produced from soybean oil, coconut, rice bran, cotton, pequi, babassu, mamona, palm, castor, sunfl ower, corn, canola, jatropha and karanja. Considering the diversity of vegetal and animal sources that can be used on the biodiesel production, it is noteworthy the lack of data concerning physicochemical properties of unexplored raw materials. This work may contribute for the creation of database about physicochemical properties of oil and biodiesel from different sources which will allow design and scale-up, both the necessary equipment to the production line and reciprocating engines.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
This paper discusses the influence of the design parameters in the operation and construction of an internal combustion engine. A theoretical analysis was developed using a standard crank-connecting rod-piston to verify the behavior of the stresses generated in the combustion and transformed into rotational energy of the crank shaft. Design parameters directly influence not only the final result of the characteristics of power and torque, but how the engine must be built to withstand different loads. The choice of parameters of a combustion engine is directly linked with the application of the engine and the final result expected of it function
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG