972 resultados para Affective classification
Resumo:
Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several other SVM classifiers.
Resumo:
An absolute erythrocytosis is present when the red cell mass is raised and the haematocrit is elevated above prescribed limits. Causes of an absolute erythrocytosis can be primary where there is an intrinsic problem in the bone marrow and secondary where there an event outside the bone marrow driving erythropoiesis. This can further be divided into congenital and acquired causes. There remain an unexplained group idiopathic erythrocytosis. Investigation commencing with thorough history taking and examination and then investigation depending on initial features is required. Clear simple criteria for polycythaemia vera are now defined. Those who do not fulfil these criteria require further investigation depending on the clinical scenario and initial results. The erythropoietin level provides some guidance as to the direction in which to proceed and the order and extent of investigation necessary in an individual patient. It should thus be possible to make an accurate diagnosis in the majority of patients.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs) are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78-0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1-6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI. © Springer-Verlag London Limited 2008.