991 resultados para 4-(N-Propyltriethoxysilane-imino) pyridine
Resumo:
Pyridine-1-oxide complexes of lanthanide iodides of the formulaLn(PyO)8I3 whereLn=La, Pr, Nd, Tb, Dy, Er, and Yb have been prepared and characterised by analyses, molecular weight, conductance, infrared and proton NMR data. Proton NMR and IR data have shown the coordination of the ligand to the metal through the oxygen atom of the N–O group. NMR data have been interpreted in terms of a distorted square antiprismatic geometry in solution.
Resumo:
An inducible membrane-bound l-4-hydroxymandelate oxidase (decarboxylating) from Pseudomonas convexa has been solubilized and partially purified. It catalyzes the conversion of l-4-hydroxymandelic acid to 4-hydroxybenzaldehyde in a single step with the stoichiometric consumption of O2 and liberation of CO2. The enzyme is optimally active at pH 6.6 and at 55 oC. It requires FAD and Mn2+ for its activity. The membrane-bound enzyme is more stable than the solubilized and purified enzyme. After solubilization it gradually loses its activity when kept at 5 oC which can be fully reactivated by freezing and thawing. The Km values for DL-4-hydroxymandelate and FAD are 0.44 mM and 0.038 mM respectively. The enzyme is highly specific for DL-4-hydroxymandelic acid. DL-3,4-Dihydroxymandelic acid competitively inhibited the enzyme reaction. From the Dixon plot the Ki for DL-3,4-dihydroxymandelic acid was calculated to be 1.8 × 10−4 M. The enzyme is completely inactivated by thiol compounds and not affected by thiol inhibitors. The enzyme is also inhibited by denaturing agents, heavy metal ions and by chelating agents.
Resumo:
Temperature dependence of chlorine nuclear quadrupole resonance in 2-chloro 5-nitrobenzoic acid and 4-chloro 3-nitrobenzoic acid has been investigated in the region 77° K to room temperature. No phase transition has been observed. The results are analysed to obtain the torsional frequencies and their temperature dependence. A nonlinear temperature dependence is obtained for the torsional frequencies.
Resumo:
The infrared spectra of 2,4-dithiobiuret(DTB), N-deuterated dithiobiuret(DTB-d5) and the laser Raman spectrum of DTB are reported. Normal coordinate treatments of DTB and DTB-d5 have been carried out to aid the assignment of the vibrational frequencies. A trans—cis conformation is favoured for DTB molecule in the solid state.
Resumo:
An inducible Image -mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of Image -mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with Image -mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10−4, 1.9 × 10−4, and 4.7 × 10−5 Image , respectively. The enzyme is very specific for Image -mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.
Resumo:
THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.
Resumo:
The structure of the abnormal product 1a formed in the Knoevenagel condensation of 2-carbethoxycyclohexanone and malononitrile has been further confirmed. Oxidation of the tetrahydroisoquinoline 3b using Na2Cr2O-AcOH-H2SO4 gave the keto isoquinoline 3d and the isoquinoline-1-carboxylic acid 5a. The acid chloride of 5a was condensed with diethyl ethoxymagnesiomalonate to afford after decarbethoxylation the methyl ketone 5d which on Baeyer-Villiger oxidation gave a mixture of the acetate 1g and the title compound 1b. The unambiguous synthesis of 1b confirms the structure assigned earlier to the title compound also formed during the partial hydrolysis of the diethoxy compound 1c. Condensation of 2-acetylcyclohexane-1,3-dione with malononitrile gave the quinoline derivative 4c which on ethylation yielded the ketoquinoline 4d. The present studies have confirmed that the quinoline compound 4a is also formed in the condensation of 2-acetylcyclohexanone and cyanoacetamide.
Resumo:
The reaction of the title complexes (FIG. 1) with N-bromosuccinimide or bromine in chloroform yields isomeric bromo complexes on substitution of the γ-CH carbon proton by bromine. The brominated products have been characterised by ir, pmr, electronic absorption spectra, conductivity and magnetic susceptibility measurements. The linkage isomerisation of the brominated products in chloroform has been shown to depend on the diamine residue.
Resumo:
The Fourier transforms of the collagen molecular structure have been calculated taking into consideration various side chain atoms, as well as the presence of bound water molecules. There is no significant change in the calculated intensity distribution on including the side chain atoms of non-imino-acid residues. Taking into account the presence of about two bound water molecules per tripeptide unit, the agreement with the observed x-ray pattern is slightly improved. Fourier transforms have also been calculated for the detailed molecular geometries proposed from other laboratories. It is found that there are no major differences between them, as compared to our structure, either in the positions of peak intensity or in the intensity distribution. Hence it is not possible to judge the relative merits of the various molecular geometries for the collagen triple helix from a comparison of the calculated transforms with the meagre data available from its x-ray fibre pattern. It is also concluded that the collagen molecular structure should be regarded as a somewhat flexible chain structure, capable of adapting itself to the requirements of the different side groups which occur in each local region.
Resumo:
An inducible benzoate-4-hydroxylase has been partially purified from crude extracts of the mycelial felts of Aspergillus niger. This enzyme catalyzes the transformation of benzoate to p-hydroxybenzoate with equimolar consumption of NADPH and O2. It requires tetrahydropteridine as a prosthetic group. The optimum activity was found at pH 6.2 with a Km value at 30°C of 1.6 · 10−4 M for NADPH and 1.3 · 10−4 M for benzoate. Fe2+ (iron) is required for the enzyme activity. The enzyme is stabilized by the inclusion of benzoate, EDTA and glutathione in the extracting buffer. The enzyme is specific for benzoate as substrate. Sulfhydryl group(s) are essential for enzyme activity as indicated by p-chloromercuri-benzoate and N-ethylmaleimide inactivation. Benzoate-4-hydroxylase activity is decreased in the mycelial felts of Aspergillus niger grown in the presence of higher concentrations of benzoate. Maximum activity of the enzyme was observed at 36 h after inoculation.
Resumo:
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.
Resumo:
1. Cell-free extracts of Arthrobacter synephrinum catalyse the oxidation of 3,4-dihydroxy-phenylacetate. 2. The product of oxidation was characterized as 2-hydroxy-5-carboxymethylmuconate semialdehyde from its chemical behaviour as well as from nuclear-magnetic-resonance spectra. 3. A 3,4-dihydroxyphenylacetate 2,3-dioxygenase (EC 1.13.11.15) was partially purified from A. synephrinum. 4. The enzyme had a Km of 25 micrometer towards its substrate and exhibited typical Michaelis-Menten kinetics. 5. The enzyme also catalysed the oxidation of 3,4-dihydroxymandelate and 3,4-dihydroxyphenylpropionate, at reaction rates of 0.5 and 0.04 respectively of that for 3,4-dihydroxyphenylacetate. 6. The enzyme was sensitive to treatment with thiol-specific reagents. 7. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography was approx. 282000.
Resumo:
In-plane vibration modes of 1,2,5- and 1,3,4-oxa- and thia-diazoles, and 1,2,5-selenadiazole have been assigned on the basis of detailed normal coordinate analysis employing data on several deuterated species. In-plane vibration frequencies of two 1,2,3,4-thiatriazole derivatives have been calculated and compared with observed values.
Resumo:
Zeeman (35Cl) NQR studies in polycrystalline samples of 4,6-dichloropyrimidine and 6 chloro 2,4 dimethoxypyrimidine show that the asymmetry at the four chemically inequivalent chlorine sites in the former is about 10%, while in the latter (one line) the asymmetry is almost zero. Using a valence-bond picture, C-Cl bonds in 4,6-dichloropyrimidine have been characterised, and the results are also compared with those in a corresponding benzene compound using a simple molecular orbital calculation. The axial symmetry of C-Cl bond in the second compound has been attributed to mesomeric effects.
Resumo:
Die kristalline Struktur von Aza-twistanon wurde durch eine Röntgenstruktur-analyse untersucht. Die Kristalle gehören zur monoklinen Raumgruppe P21/n mit den Zelldimensionen a = 6,662(6), b = 13,36(2), c = 8,606(9) Å, = 98,97(2)°, V = 757 Å3, Z = 4. Die Struktur wurde mit Direktmethoden gelöst und bis zu R = 0,035 verfeinert (mittlere (c) = 0,003 Å3).Die cis-Amidgruppe ist relativ stark deformiert und hat einen Torsionswinkel C -C -N-C von 14,5(4)° (Deformation aus der Ebene c = 5,0(5)° und N = 13,5(4,0)°). Die gegenüberliegende äthylenbrücke weist einen Torsionswinkel von 25,1(5)° auf. Die entsprechenden Winkel in Twistan betragen je 20°. Das tricyclische Gerüst von Aza-twistanon hat approximative.