827 resultados para 3D user interface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background In the UK occupational therapy pre-discharge home visits are routinely carried out as a means of facilitating safe transfer from the hospital to home. Whilst they are an integral part of practice, there is little evidence to demonstrate they have a positive outcome on the discharge process. Current issues for patients are around the speed of home visits and the lack of shared decision making in the process, resulting in less than 50 % of the specialist equipment installed actually being used by patients on follow-up. To improve practice there is an urgent need to examine other ways of conducting home visits to facilitate safe discharge. We believe that Computerised 3D Interior Design Applications (CIDAs) could be a means to support more efficient, effective and collaborative practice. A previous study explored practitioners perceptions of using CIDAs; however it is important to ascertain older adult’s views about the usability of technology and to compare findings. This study explores the perceptions of community dwelling older adults with regards to adopting and using CIDAs as an assistive tool for the home adaptations process. Methods Ten community dwelling older adults participated in individual interactive task-focused usability sessions with a customised CIDA, utilising the think-aloud protocol and individual semi-structured interviews. Template analysis was used to carry out both deductive and inductive analysis of the think-aloud and interview data. Initially, a deductive stance was adopted, using the three pre-determined high-level themes of the technology acceptance model (TAM): Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Actual Use (AU). Inductive template analysis was then carried out on the data within these themes, from which a number of sub-thmes emerged. Results Regarding PU, participants believed CIDAs served as a useful visual tool and saw clear potential to facilitate shared understanding and partnership in care delivery. For PEOU, participants were able to create 3D home environments however a number of usability issues must still be addressed. The AU theme revealed the most likely usage scenario would be collaborative involving both patient and practitioner, as many participants did not feel confident or see sufficient value in using the application autonomously. Conclusions This research found that older adults perceived that CIDAs were likely to serve as a valuable tool which facilitates and enhances levels of patient/practitioner collaboration and empowerment. Older adults also suggested a redesign of the interface so that less sophisticated dexterity and motor functions are required. However, older adults were not confident, or did not see sufficient value in using the application autonomously. Future research is needed to further customise the CIDA software, in line with the outcomes of this study, and to explore the potential of collaborative application patient/practitioner-based deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A visualização de conjuntos de dados volumétricos é comum em diversas áreas de aplicação e há já alguns anos os diversos aspectos envolvidos nessas técnicas vêm sendo pesquisados. No entanto, apesar dos avanços das técnicas de visualização de volumes, a interação com grandes volumes de dados ainda apresenta desafios devido a questões de percepção (ou isolamento) de estruturas internas e desempenho computacional. O suporte do hardware gráfico para visualização baseada em texturas permite o desenvolvimento de técnicas eficientes de rendering que podem ser combinadas com ferramentas de recorte interativas para possibilitar a inspeção de conjuntos de dados tridimensionais. Muitos estudos abordam a otimização do desempenho de ferramentas de recorte, mas muito poucos tratam das metáforas de interação utilizadas por essas ferramentas. O objetivo deste trabalho é desenvolver ferramentas interativas, intuitivas e fáceis de usar para o recorte de imagens volumétricas. Inicialmente, é apresentado um estudo sobre as principais técnicas de visualização direta de volumes e como é feita a exploração desses volumes utilizando-se recorte volumétrico. Nesse estudo é identificada a solução que melhor se enquadra no presente trabalho para garantir a interatividade necessária. Após, são apresentadas diversas técnicas de interação existentes, suas metáforas e taxonomias, para determinar as possíveis técnicas de interação mais fáceis de serem utilizadas por ferramentas de recorte. A partir desse embasamento, este trabalho apresenta o desenvolvimento de três ferramentas de recorte genéricas implementadas usando-se duas metáforas de interação distintas que são freqüentemente utilizadas por usuários de aplicativos 3D: apontador virtual e mão virtual. A taxa de interação dessas ferramentas é obtida através de programas de fragmentos especiais executados diretamente no hardware gráfico. Estes programas especificam regiões dentro do volume a serem descartadas durante o rendering, com base em predicados geométricos. Primeiramente, o desempenho, precisão e preferência (por parte dos usuários) das ferramentas de recorte volumétrico são avaliados para comparar as metáforas de interação empregadas. Após, é avaliada a interação utilizando-se diferentes dispositivos de entrada para a manipulação do volume e ferramentas. A utilização das duas mãos ao mesmo tempo para essa manipulação também é testada. Os resultados destes experimentos de avaliação são apresentados e discutidos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every time more we hear in our everyday statements like "I'm stressed!", "Don´t worry me more than I am." But in what sense can we use technology to combat these congestions that we deal with daily? Well, one way would be to use technology to create objects, systems or applications that can spoil us and preferably be imperceptible by the user and, for this we have the ubiquitous computing and nurturant technologies. The ubiquitous computing is increasingly discussed as well as ways to make your computer more subtle in the view of the user, which is subject of research and development. The use of technology as a source of relaxation and spoil us is a strand that is being explored in the context of nurturant technologies. Accordingly, this thesis is focused on the development of an object and several applications with which we can interact. The object and applications have the purpose to spoil us and help us relax after a long day at work or in some situation more stressful. The object developed employs technologies like the use of accelerometers and the applications developed employs communications between computers and Web cameras. This thesis begins with a brief introduction to the areas of research and others that we can include in this thesis, such as ubiquitous computing and the nurturant technologies, providing yet general information on stress and ways to mitigate it. Later is described some of the work already done and that influenced this thesis as well as the prototypes developed and the experiences performed, ending with a general conclusion and future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION With the advent of Web 2.0, social networking websites like Facebook, MySpace and LinkedIn have become hugely popular. According to (Nilsen, 2009), social networking websites have global1 figures of almost 250 millions unique users among the top five2, with the time people spend on those networks increasing 63% between 2007 and 2008. Facebook alone saw a massive growth of 566% in number of minutes in the same period of time. Furthermore their appeal is clear, they enable users to easily form persistent networks of friends with whom they can interact and share content. Users then use those networks to keep in touch with their current friends and to reconnect with old friends. However, online social network services have rapidly evolved into highly complex systems which contain a large amount of personally salient information derived from large networks of friends. Since that information varies from simple links to music, photos and videos, users not only have to deal with the huge amount of data generated by them and their friends but also with the fact that it‟s composed of many different media forms. Users are presented with increasing challenges, especially as the number of friends on Facebook rises. An example of a problem is when a user performs a simple task like finding a specific friend in a group of 100 or more friends. In that case he would most likely have to go through several pages and make several clicks till he finds the one he is looking for. Another example is a user with more than 100 friends in which his friends make a status update or another action per day, resulting in 10 updates per hour to keep up. That is plausible, especially since the change in direction of Facebook to rival with Twitter, by encouraging users to update their status as they do on Twitter. As a result, to better present the web of information connected to a user the use of better visualizations is essential. The visualizations used nowadays on social networking sites haven‟t gone through major changes during their lifetimes. They have added more functionality and gave more tools to their users, but still the core of their visualization hasn‟t changed. The information is still presented in a flat way in lists/groups of text and images which can‟t show the extra connections pieces of information. Those extra connections can give new meaning and insights to the user, allowing him to more easily see if that content is important to him and the information related to it. However showing extra connections of information but still allowing the user to easily navigate through it and get the needed information with a quick glance is difficult. The use of color coding, clusters and shapes becomes then essential to attain that objective. But taking into consideration the advances in computer hardware in the last decade and the software platforms available today, there is the opportunity to take advantage of 3D. That opportunity comes in because we are at a phase were the hardware and the software available is ready for the use of 3D in the web. With the use of the extra dimension brought by 3D, visualizations can be constructed to show the content and its related information to the user at the same screen and in a clear way. Also it would allow a great deal of interactivity. Another opportunity to create better information‟s visualization presents itself in the form of the open APIs, specifically the ones made available by the social networking sites. Those APIs allow any developers to create their own applications or sites taking advantage of the huge amount of information there is on those networks. Specifically to this case, they open the door for the creation of new social network visualizations. Nevertheless, the third dimension is by itself not enough to create a better interface for a social networking website, there are some challenges to overcome. One of those challenges is to make the user understand what the system is doing during the interaction with the user. Even though that is important in 2D visualizations, it becomes essential in 3D due to the extra dimension. To overcome that challenge it‟s necessary the use of the principles of animations defined by the artists at Walt Disney Studios (Johnston, et al., 1995). By applying those principles in the development of the interface, the actions of the system in response to the user inputs became clear and understandable. Furthermore, a user study needs to be performed so the users‟ main goals and motivations, while navigating the social network, are revealed. Their goals and motivations are important in the construction of an interface that reflects the user expectations for the interface, but also helps in the development of appropriate metaphors. Those metaphors have an important role in the interface, because if correctly chosen they help the user understand the elements of the interface instead of making him memorize it. The last challenge is the use of 3D visualization on the web, since there have been several attempts to bring 3D into it, mainly with the various versions of VRML which were destined to failure due to the hardware limitations at the time. However, in the last couple of years there has been a movement to make the necessary tools to finally allow developers to use 3D in a useful way, using X3D or OpenGL but especially flash. This thesis argues that there is a need for a better social network visualization that shows all the dimensions of the information connected to the user and that allows him to move through it. But there are several characteristics the new visualization has to possess in order for it to present a real gain in usability to Facebook‟s users. The first quality is to have the friends at the core of its design, and the second to make use of the metaphor of circles of friends to separate users in groups taking into consideration the order of friendship. To achieve that several methods have to be used, from the use of 3D to get an extra dimension for presenting relevant information, to the use of direct manipulation to make the interface comprehensible, predictable and controllable. Moreover animation has to be use to make all the action on the screen perceptible to the user. Additionally, with the opportunity given by the 3D enabled hardware, the flash platform, through the use of the flash engine Papervision3D and the Facebook platform, all is in place to make the visualization possible. But even though it‟s all in place, there are challenges to overcome like making the system actions in 3D understandable to the user and creating correct metaphors that would allow the user to understand the information and options available to him. This thesis document is divided in six chapters, with Chapter 2 reviewing the literature relevant to the work described in this thesis. In Chapter 3 the design stage that resulted in the application presented in this thesis is described. In Chapter 4, the development stage, describing the architecture and the components that compose the application. In Chapter 5 the usability test process is explained and the results obtained through it are presented and analyzed. To finish, Chapter 6 presents the conclusions that were arrived in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a computer simulator for sucker rod pumped vertical wells. The simulator is able to represent the dynamic behavior of the systems and the computation of several important parameters, allowing the easy visualization of several pertinent phenomena. The use of the simulator allows the execution of several tests at lower costs and shorter times, than real wells experiments. The simulation uses a model based on the dynamic behavior of the rod string. This dynamic model is represented by a second order partial differencial equation. Through this model, several common field situations can be verified. Moreover, the simulation includes 3D animations, facilitating the physical understanding of the process, due to a better visual interpretation of the phenomena. Another important characteristic is the emulation of the main sensors used in sucker rod pumping automation. The emulation of the sensors is implemented through a microcontrolled interface between the simulator and the industrial controllers. By means of this interface, the controllers interpret the simulator as a real well. A "fault module" was included in the simulator. This module incorporates the six more important faults found in sucker rod pumping. Therefore, the analysis and verification of these problems through the simulator, allows the user to identify such situations that otherwise could be observed only in the field. The simulation of these faults receives a different treatment due to the different boundary conditions imposed to the numeric solution of the problem. Possible applications of the simulator are: the design and analysis of wells, training of technicians and engineers, execution of tests in controllers and supervisory systems, and validation of control algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the benefits of using immersive and interactive virtual reality environments to teach Dentistry. We present a tool for educators to manipulate and edit virtual models. One of the main contributions is that multimedia information can be semantically associated with parts of the model, through an ontology, enriching the experience; for example, videos can be linked to each tooth demonstrating how to extract them. The use of semantic information gives a greater flexibility to the models, since filters can be applied to create temporary models that show subsets of the original data in a human friendly way. We also explain how the software was written to run in arbitrary multi-projection environments. © 2011 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gesture-based applications have particularities, since users interact in a natural way, much as they interact in the non-digital world. Hence, new requirements are needed on the software design process. This paper shows a software development process model for these applications, including requirement specification, design, implementation, and testing procedures. The steps and activities of the proposed model were tested through a game case study, which is a puzzle game. The puzzle is completed when all pieces of a painting are correctly positioned by the drag and drop action of users hand gesture. It also shows the results obtained of applying a heuristic evaluation on this game. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A routine was developed in C++ for the processing of social and environmental census data acquired by the Brazilian Institute of Geography and Statistics (IBGE). The routine employs a simple graphical environment. The data generated are presented in a tabular format, which facilitates a broad and objective view of the values, and provides a convenient means of querying the database. The source code used to develop the routine permits updates and changes, as required by the user. Statistical and mathematical analysis enables the generation of social and environmental indicators, together with quantitative and qualitative classification of the socio-environmental quality of the region analyzed. As an example, the routine was applied using census data for the city of Sorocaba (São Paulo State, Brazil), including conditions of household occupation, water supply, sanitation, level of education, income, and other factors. It is envisaged that the proposed analytical model will assist professionals from different fields of research and teaching to develop urban planning and management strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)