968 resultados para 3 beta-HSD
Resumo:
New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.
Resumo:
Background Homocysteine and asymmetric dimethylarginine (ADMA) affect nitric oxide (NO) concentration, thereby contributing to cardiovascular disease (CVD). Both amino acids can be reduced in vivo by estrogen. Variation in the estrogen receptor (ER) may influence homocysteine and ADMA, yet no information is available on associations with single nucleotide polymorphisms in the estrogen receptor genes ER alpha (PvuII and XbaI) and ER beta (1730G -> A and cx+56 G -> A). Objective To find relationships between common polymorphisms associated with cardiovascular disease and cardiovascular risk factors homocysteine and ADMA. Methods In a cross-sectional study with healthy postmenopausal women (n = 89), homocysteine, ADMA, nitric oxide metabolites (NOx), plasma folate and ER alpha and beta polymorphisms ER alpha PvuII, ER alpha XbaI; ER beta 1730G -> A (AluI), ER beta cx+56 G -> A (Tsp5091) were analyzed. Results Women who are homozygotic for ER beta cx+56 G -> A A/A exhibited higher homocysteine (p = 0.012) and NOx (p = 0.056) levels than wildtype or heterozygotes. NOx concentration was also significantly affected by ER beta 1730 G -> A polymorphism (p = 0.025). The ER beta (p < 0.001) and ER alpha (p < 0.001) polymorphisms were in linkage disequilibrium. Conclusions Women who are homozygotic for ER beta cx+S6 G -> A A/A may be at increased risk for cardiovascular disease due to higher homocysteine levels.
Resumo:
Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.
Resumo:
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K-m) clearly indicated that BbgI (6.11 x 10(4) s(-1) M-1), BbgIII (2.36 x 10(4) s(-1) M-1) and especially BbgIV (4.01 x 10(5) s(-1) M-1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1 -> 6) galactobiose (5.59 x 10(4) s(-1) M-1) than lactose (1.48 x 10(3) s(-1) M-1). Activity measurements towards other substrates (e. g. beta-D-(1 -> 6) galactobiose, beta-D-(1 -> 4) galactobiose, beta-D-(1 -> 4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Resumo:
Synthesis of prebiotic alpha- and beta-galactooligosaccharides (GOS) using the whole cells of Bifidobacterium bifidum NCIMB 41171 was investigated. Determination of alpha- and beta-galactosidase activities showed them to be at 3 and 205 g(-1) of freeze dried biomass, respectively, and they increased to 5 and 344 U g(-1), respectively, when cells were treated with toluene. Starting with 450-500 mg mL(-1) lactose, maximum GOS concentrations were observed at 80-85% lactose conversions and the mixtures contained oligosaccharides (with a degree of polymerisation >= 3) at 77-109 mg mL(-1) and trans-galactosylated disaccharides between 85-115 mg mL(-1). The GOS yield values varied between 36% and 43%. An alpha-linked disaccharide was detected and its presence was confirmed by gas chromatography mass spectroscopy. Cells were re-used up to 8 times without changes in reaction times or the substrate conversions to GOS. Oligosaccharide synthesis was not inhibited by the presence of glucose or galactose. The mixtures were successfully purified from glucose (92% of glucose removed) by fermentation with Saccharomyces cerevisiae with no losses in the oligosaccharide content and only a small decrease on the galactose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. The beta-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. S-(1,1,2,2-Tetrafluoroethyl)-L-CySteine is an excellent aminotransferase and beta-lyase substrate of rhGTK. Moderate aminotransferase and beta-lyase activities occur with the chemopreventive agent Se-methyl-L-selenocysteine. L-3-(2-Naphthyl)alanine, L-3-(1-naphthyl)alanine, 5-S-L-cysteinyldopamine and 5-S-L-cysteinyl-L-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The alpha-keto acids generated by transamination/L-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed beta-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-L-CysteinyIdopamine, but not with 5-S-L-CySteinyl-L-DOPA. The importance of transamination, oxidation and beta-elimination reactions involving 5-S-L-cysteinyldopamine, 5-S-L-cysteinyt-L-DOPA and Se-methyl-L-selenocysteirte in human tissues and their biological relevance are discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.
Resumo:
Neuropathic pain is a difficult state to treat, characterized by alterations in sensory processing that can include allodynia (touch-evoked pain). Evidence exists for nerve damage-induced plasticity in both transmission and modulatory systems, including changes in voltage-dependent calcium channel (VDCC) expression and function; however, the role of Ca(v)2.3 calcium channels has not clearly been defined. Here, the effects of SNX-482, a selective Ca(v)2.3 antagonist, on sensory transmission at the spinal cord level have been investigated in the rat. The spinal nerve ligation (SNL) model of chronic neuropathic pain [Kim & Chung, (1992) Pain, 50, 355-363] was used to induce mechanical allodynia, as tested on the ipsilateral hindpaw. In vivo electrophysiological measurements of dorsal horn neuronal responses to innocuous and noxious electrical and natural stimuli were made after SNL and compared to sham-operated animals. Spinal SNX-482 (0.5-4 mu g/50 mu L) exerted dose-related inhibitions of noxious C-fibre- and A delta-fibre-mediated neuronal responses in conditions of neuropathy, but not in sham-operated animals. Measures of spinal cord hyperexcitability and nociception were most susceptible to SNX-482. In contrast, non-noxious A beta-mediated responses were not affected by SNX-482. Moreover, responses to innocuous mechanical and also thermal stimuli were more sensitive to SNX-482 in SNL than control animals. This study is the first to demonstrate an antinociceptive role for SNX-482-sensitive channels in dorsal horn neurons during neuropathy. These data are consistent with plasticity in Ca(V)2.3 calcium channel expression and suggest a potential selective target to reduce nociceptive transmission during conditions of nerve damage.
Resumo:
The synthetic approach to threo-2-amino-3-hydroxyesters possessing long alkyl chains outlined herein centres on the generation of chiral azomethine ylids by reaction of (5R)-5-phenyl-morpholin-2-one, (R)-(1), with long chain aldehydes. In the presence of a second equivalent of aldehyde, the azomethine ylid can be trapped to afford a cycloadduct with three new stereodefined centres. Degradation of the cycloadduct allows entry to beta-substituted-alpha-amino acid derivatives, which have potential as building blocks for sphingosine synthesis.
Resumo:
BACKGROUND: In 1997, the US Food and Drug Administration passed a unique ruling that allowed oat bran to be registered as the first cholesterol-reducing food at a dosage of 3 g beta-glucan/d. OBJECTIVE: The effects of a low dose of oat bran in the background diet only were investigated in volunteers with mild-to-moderate hyperlipidemia. DESIGN: The study was a double-blind, placebo-controlled, randomized, parallel study. Sixty-two healthy men (n = 31) and women (n = 31) were randomly allocated to consume either 20 g oat bran concentrate (OBC; containing 3 g beta-glucan) or 20 g wheat bran (control) daily for 8 wk. Fasting blood samples were collected at weeks -1, 0, 4, 8, and 12. A subgroup (n = 17) was studied postprandially after consumption of 2 meals (containing no OBC or wheat bran) at baseline and after supplementation. Fasting plasma samples were analyzed for total cholesterol, HDL cholesterol, triacylglycerol, glucose, and insulin. LDL cholesterol was measured by using the Friedewald formula. The postprandial samples were anlayzed for triacylglycerol, glucose, and insulin. RESULTS: No significant difference was observed in fasting plasma cholesterol, LDL cholesterol, glucose, or insulin between the OBC and wheat-bran groups. HDL-cholesterol concentrations fell significantly from weeks 0 to 8 in the OBC group (P = 0.05). There was a significant increase in fasting glucose concentrations after both OBC (P = 0.03) and wheat-bran (P = 0.02) consumption. No significant difference was found between the OBC and wheat-bran groups in any of the postprandial variables measured. CONCLUSIONS: A low dosage of beta-glucan (3 g/d) did not significantly reduce total cholesterol or LDL cholesterol in volunteers with plasma cholesterol concentrations representative of a middle-aged UK population.
Resumo:
Background FFAR1 receptor is a long chain fatty acid G-protein coupled receptor which is expressed widely, but found in high density in the pancreas and central nervous system. It has been suggested that FFAR1 may play a role in insulin sensitivity, lipotoxicity and is associated with type 2 diabetes. Here we investigate the effect of three common SNPs of FFAR1 (rs2301151; rs16970264; rs1573611) on pancreatic function, BMI, body composition and plasma lipids. Methodology/Principal Findings For this enquiry we used the baseline RISCK data, which provides a cohort of overweight subjects at increased cardiometabolic risk with detailed phenotyping. The key findings were SNPs of the FFAR1 gene region were associated with differences in body composition and lipids, and the effects of the 3 SNPs combined were cumulative on BMI, body composition and total cholesterol. The effects on BMI and body fat were predominantly mediated by rs1573611 (1.06 kg/m2 higher (P = 0.009) BMI and 1.53% higher (P = 0.002) body fat per C allele). Differences in plasma lipids were also associated with the BMI-increasing allele of rs2301151 including higher total cholesterol (0.2 mmol/L per G allele, P = 0.01) and with the variant A allele of rs16970264 associated with lower total (0.3 mmol/L, P = 0.02) and LDL (0.2 mmol/L, P<0.05) cholesterol, but also with lower HDL-cholesterol (0.09 mmol/L, P<0.05) although the difference was not apparent when controlling for multiple testing. There were no statistically significant effects of the three SNPs on insulin sensitivity or beta cell function. However accumulated risk allele showed a lower beta cell function on increasing plasma fatty acids with a carbon chain greater than six. Conclusions/Significance Differences in body composition and lipids associated with common SNPs in the FFAR1 gene were apparently not mediated by changes in insulin sensitivity or beta-cell function.
Resumo:
Glycogen synthase kinase 3 (GSK3, of which there are two isoforms, GSK3alpha and GSK3beta) was originally characterized in the context of regulation of glycogen metabolism, though it is now known to regulate many other cellular processes. Phosphorylation of GSK3alpha(Ser21) and GSK3beta(Ser9) inhibits their activity. In the heart, emphasis has been placed particularly on GSK3beta, rather than GSK3alpha. Importantly, catalytically-active GSK3 generally restrains gene expression and, in the heart, catalytically-active GSK3 has been implicated in anti-hypertrophic signalling. Inhibition of GSK3 results in changes in the activities of transcription and translation factors in the heart and promotes hypertrophic responses, and it is generally assumed that signal transduction from hypertrophic stimuli to GSK3 passes primarily through protein kinase B/Akt (PKB/Akt). However, recent data suggest that the situation is far more complex. We review evidence pertaining to the role of GSK3 in the myocardium and discuss effects of genetic manipulation of GSK3 activity in vivo. We also discuss the signalling pathways potentially regulating GSK3 activity and propose that, depending on the stimulus, phosphorylation of GSK3 is independent of PKB/Akt. Potential GSK3 substrates studied in relation to myocardial hypertrophy include nuclear factors of activated T cells, beta-catenin, GATA4, myocardin, CREB, and eukaryotic initiation factor 2Bvarepsilon. These and other transcription factor substrates putatively important in the heart are considered. We discuss whether cardiac pathologies could be treated by therapeutic intervention at the GSK3 level but conclude that any intervention would be premature without greater understanding of the precise role of GSK3 in cardiac processes.
Resumo:
A cross-sectional analysis of ethnic differences in dietary intake, insulin sensitivity and beta-cell function, using the intravenous glucose tolerance test (IVGTT), was conducted on 497 healthy adult participants of the ‘Reading, Imperial, Surrey, Cambridge, and Kings’ (RISCK) study. Insulin sensitivity (Si) was significantly lower in African-Caribbean (AC) and South Asian (SA) participants [IVGTT-Si; AC: 2.13 vs SA: 2.25 vs white-European (WE): 2.84 (×10−4 mL µU min)2, p < 0.001]. AC participants had a higher prevalence of anti-hypertensive therapy (AC: 19.7% vs SA: 7.5%), the most cardioprotective lipid profile [total:high-density lipoprotein (HDL); AC: 3.52 vs SA: 4.08 vs WE: 3.83, p = 0.03] and more pronounced hyperinsulinaemia [IVGTT–acute insulin response (AIR)] [AC: 575 vs SA: 428 vs WE: 344 mL/µU/min)2, p = 0.002], specifically in female participants. Intake of saturated fat and carbohydrate was lower and higher in AC (10.9% and 50.4%) and SA (11.1% and 52.3%), respectively, compared to WE (13.6% and 43.8%, p < 0.001). Insulin resistance in ACs is characterised by ‘normal’ lipid profiles but high rates of hypertension and pronounced hyperinsulinaemia.
Resumo:
The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.