986 resultados para 260603 Ionospheric and Magnetospheric Physics
Resumo:
Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB®/SIMULINK® models to structural VHDL-AMS descriptions. The tool developed, named MS 2SV, reads a SIMULINK® model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the System Vision™. To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB®/ SIMULINK®. The VHDL-AMS code generated automatically by MS 2SV, (MATLAB®/SIMULINK® to System Vision™), was then simulated in the System Vision™. The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.
Resumo:
Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data.
Resumo:
In this work, an analysis of scientific bibliographic productivity was made using the Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo (FFCLRP-USP) as example. It is a special Institution in the Brazilian University system which encompasses four important areas of knowledge (fields of concentration) in natural, biological, humanities, and social areas. It is composed by four departments which offer altogether eight undergraduate courses: 1) Psychology, 2) Pedagogy, 3) Chemistry, 4) Biology, 5) Medical Physics, 6) Biomedical Informatics, 7) Sciences of Information and Documentation and 8) Mathematics Applied to Business and six graduate programs leading to M.S. and Ph.D. degrees. Moreover, when analyzing the different courses of FFCLRP, they represent typical academic organization in Brazil and Latin America and could be taken as a model for analyzing other Brazilian research institutions. This analysis was made using: 1) the total number of papers (indexed in Curriculum Lattes database), 2) the number of papers indexed by Thomson ISI Web of Science database, and 3) the Hirsch (h-index). Bibliometric evaluations of undergraduate courses showed a better performance of the courses of Chemistry (P < 0.05), Biology (P < 0.05) and Medical Physics (P < 0.05) when compared to the Pedagogy, Sciences of Information and Documentation (P < 0.05) and Psychology (P < 0.05). We also analyzed the scientific output of the six graduate programs of FFCLRP-USP: 1) Chemistry, 2) Physics Applied to Medicine and Biology, 3) Entomology, 4) Compared Biology, 5) Psychology, 6) Psychobiology. The graduate programs in Psychobiology, Chemistry, Physics Applied to Medicine and Biology, Compared Biology, and Entomology presented very similar results, concerning the assessment of the three indexes. The graduate program in Psychology presented a lower h-index (P < 0.05) and had fewer papers indexed by the ISI (P < 0.05) when compared to the other graduate programs. The worse performance of the psychology program, pedagogy, sciences of information and documentation, psychology courses may be associated to the limited coverage of ISI database and some particular characteristics of this field of concentration.
Resumo:
By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.
Resumo:
The performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10GeV/c to about 1% at 500 GeV/c. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.
Resumo:
The momentum distribution is a powerful probe of strongly interacting systems that are expected to display universal behavior. This is contained in the contact parameters which relate few- and many-body properties. Here we consider a Bose gas in two dimensions and explicitly show that the two-body contact parameter is universal and then demonstrate that the momentum distribution at next-to-leading order has a logarithmic dependence on momentum which is vastly different from the three-dimensional case. Based on this, we propose a scheme for measuring the effective dimensionality of a quantum many-body system by exploiting the functional form of the momentum distribution. © 2013 American Physical Society.
Resumo:
We study the statics and dynamics of a dipolar Bose-Einstein condensate (BEC) droplet bound by interspecies contact interaction in a trapped nondipolar BEC. Our findings are demonstrated in terms of stability plots of a dipolar 164Dy droplet bound in a trapped nondipolar 87Rb BEC with a variable number of 164Dy atoms and interspecies scattering length. A trapped nondipolar BEC of a fixed number of atoms can bind only a dipolar droplet containing fewer atoms than a critical number for the interspecies scattering length between two critical values. The shape and size (statics) as well as the small breathing oscillation (dynamics) of the dipolar BEC droplet are studied using numerical and variational solutions of a mean-field model. We also suggest an experimental procedure for achieving such a 164Dy droplet by relaxing the trap on the 164Dy BEC in a trapped binary 87Rb-164Dy mixture. © 2013 American Physical Society.
Resumo:
The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances, where deviations of experimental values from universal model predictions are associated with effective range corrections. The effective range correction is extracted with a weighted average given by 3.9±0.8R vdW, where RvdW is the van der Waals length scale, which is consistent with the van der Waals potential tail for the Cs2 system. The method can be generally applied to other cold atom experimental setups to determine the contribution of the effective range to the tetramer dissociation position. © 2013 American Physical Society.
Resumo:
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited. © 2013 American Physical Society.
Resumo:
In a model with B - L gauge symmetry, right-handed neutrinos may have exotic local B - L charge assignments: two of them with B - L = -4 and the other one having B - L = 5. Then, it is natural to accommodate the right-handed neutrinos with the same B - L charge in a doublet of the discrete S3 symmetry, and the third one in a singlet. If the Yukawa interactions involving right-handed neutrinos are invariant under S3, the quasi-Dirac neutrino scheme arises naturally in this model. However, we will show how in this scheme it is possible to give a value for θ13 in agreement with the Daya Bay results. For example the S3 symmetry has to be broken in the Yukawa interactions involving right-handed charged leptons. © 2013 IOP Publishing Ltd.
Resumo:
Unlike correlation of classical systems, entanglement of quantum systems cannot be distributed at will: if one system A is maximally entangled with another system B, it cannot be entangled at all with a third system C. This concept, known as the monogamy of entanglement, is manifest when the entanglement of A with a pair BC can be divided as contributions of the entanglement between A and B and A and C, plus a term τABC involving genuine tripartite entanglement and so expected to be always positive. A very important measure in quantum information theory, the entanglement of formation (EOF), fails to satisfy this last requirement. Here we present the reasons for that and show a set of conditions that an arbitrary pure tripartite state must satisfy for the EOF to become a monogamous measure, i.e., for τABC≥0. The relation derived is connected to the discrepancy between quantum and classical correlations, τABC being negative whenever the quantum correlation prevails over the classical one. This result is employed to elucidate features of the distribution of entanglement during a dynamical evolution. It also helps to relate all monogamous instances of the EOF to the squashed sntanglement, an entanglement measure that is always monogamous. © 2013 American Physical Society.
Resumo:
We consider three-body systems in two dimensions with zero-range interactions for general masses and interaction strengths. The momentum-space Schrödinger equation is solved numerically and in the Born-Oppenheimer (BO) approximation. The BO expression is derived using separable potentials and yields a concise adiabatic potential between the two heavy particles. The BO potential is Coulomb-like and exponentially decreasing at small and large distances, respectively. While we find similar qualitative features to previous studies, we find important quantitative differences. Our results demonstrate that mass-imbalanced systems that are accessible in the field of ultracold atomic gases can have a rich three-body bound state spectrum in two-dimensional geometries. Small light-heavy mass ratios increase the number of bound states. For 87Rb-87Rb-6Li and 133Cs- 133Cs-6Li we find respectively three and four bound states. © 2013 IOP Publishing Ltd.
Resumo:
We investigate how special relativity influences the transmission of classical information through quantum channels by evaluating the Holevo bound when the sender and the receiver are in (relativistic) relative motion. By using the spin degrees of freedom of spin-1/2 fermions to encode the classical information, we show that, for some configurations, the accessible information in the receiver can be increased when the spin detector moves fast enough. This is possible by allowing the momentum wave packet of one of the particles to be sufficiently wide while the momentum wave packets of other particles are kept relatively narrow. In this way, one can take advantage of the fact that boosts entangle the spin and momentum degrees of freedom of spin-1/2 fermions to increase the accessible information in the former. We close the paper with a discussion of how this relativistic quantum channel cannot in general be described by completely positive quantum maps. © 2013 American Physical Society.