991 resultados para 259903 Industrial Chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diphosphazane ligands of the type, (C20H12O2)PN(R)P(E)Y2 (R = CHMe2 or (S)-*CHMePh; E = lone pair or S; Y2 = O2C20H12 or Y = OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) bearing axially chiral 1,1'-binaphthyl-2,2′-dioxy moiety have been synthesised. The structure and absolute configuration of a diastereomeric palladium complex, [PdCl2{ηsu2}-((O2C20H12)PN((S)-*CHMePh)PPh2] has been determined by X-ray crystallography. The reactions of [CpRu(PPh3)2Cl] with various symmetrical and unsymmetrical diphosphazanes of the type, X2PN(R)PYY′ (R = CHMe2 or (S)-*CHMePh; X = C6H5 or X2 = O2C20H12; Y=Y′= C6H5 or Y = C6H5, Y′ = OC6H4Me-4 or OC6H3Me2-3,5 or N2C3HMe2-3,5) yield several diastereomeric neutral or cationic half-sandwich ruthenium complexes which contain a stereogenic metal center. In one case, the absolute configuration of a trichiral ruthenium complex, viz. [Cp*Ruη2-Ph2PN((S)-*CHMePh)*PPh (N2C3HMe2-3,5)Cl] is established by X-ray diffraction. The reactions of Ru3(CO)12 with the diphosphazanes (C20H12O2)PN(R)PY2 (R = CHMe2orMe; Y2=O2C20H12or Y= OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) yield the triruthenium clusters [Ru3(CO)10{η-(O2C20H12)PN(R)PY2}], in which the diphosphazane ligand bridges two metal centres. Palladium allyl chemistry of some of these chiral ligands has been investigated. The structures of isomeric η3-allyl palladium complexes, [Pd(η3-l,3-R′2-C3H3){η2-(rac)-(02C20H12)PN(CHMe2)PY2}](PF6) (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopic and X-ray crystallographic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of [CpRu(PPh3)(2)Cl] (1) {Cp = eta(5)-(C5H5)} with X2PN(CHMe2) PYY' {X = Y = Y' = Ph (L-1); X = Y = Ph, Y' = OC6H4Me-4 (L-4); X = Y = Ph, Y' = OC6H3Me2- 3,5 (L-5); X = Y = Ph, Y' = N2C3HMe2 (L-6)} yields the cationic chelate complexes, [CpRu(eta(2)-(X2PN(CHMe2) PYY')) PPh3] Cl. On the other hand, the reaction of 1 with X2PN(CHMe2)PYY' {X = Ph, YY' = O2C6H4(L-3)} gives the complex, [CpRu(eta(1)-L-2)(2)PPh3] Cl. Both types of complexes are formed with X2PN(CHMe2) PYY' {X = Ph, YY' = O2C6H4 (L-3)}. The reaction of 1 with (R),(S)-(H12C20O2) PN(CHMe2) PPh2 (L-7) yields both cationic and neutral complexes, [CpRu{eta(2)-(L-7)} PPh3] Cl and [CpRu{eta(1)-(L-7)}(2)PPh3] Cl and [CpRu{eta(2)-(L-7)}Cl]. The reactions of optically pure diphosphazane, Ph2PN(*CHMePh) PPhY (Y = Ph (L-8); Y = N2C3HMe2-3,5 (L-9)) with 1 give the neutral and cationic ruthenium complexes, [CpRu{eta(2)-(Ph2PN(R) PPhY)} Cl] and [CpRu{eta(2)-(Ph2PN(R)PPhY)} PPh3] Cl. "Chiral-at-metal" ruthenium complexes of diphosphazanes have been synthesized with high diastereoselectivity. The absolute configuration of a novel ruthenium complex, (SCSPRRu)-[(eta(5)-C5H5) Ru*{eta(2)-(Ph2PN(*CHMePh)P*Ph( N2C3HMe2-3,5))} Cl] possessing three chiral centers, is established by X-ray crystallography. The reactions of [CpRu{eta(2)-(L-8)} Cl] with mono or diphosphanes in the presence of NH4PF6 yield the cationic complexes, [CpRu{eta(2)-(L-8)}{eta(1)-(P)}] PF6 {P = P(OMe)(3), PPh3, Ph2P(CH2)(n)PPh2 (n = 1 or 2)}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation kinetics of polycarbonate [poly(bisphenol A carbonate)] in benzene catalyzed by commercial (rutile) TiO2 (BET surface area = 11 m(2)/g), anatase TiO2 (156 m(2)/g), and 1 atom % Pt/TiO2 (111 m2/g), prepared by the solution combustion technique, was investigated at various temperatures (230-280 degreesC) and 50 atm. The time evolution of the molecular weight distribution (MWD) was determined by gel permeation chromatography (GPC) and modeled with continuous distribution kinetics to obtain the degradation rate coefficients. The rate coefficients for the catalytic degradation of polycarbonate increased by factors of 20, 3.5, and 1.3 compared to the rate coefficients for thermal degradation when catalyzed by nanosized TiO2 anatase, Pt/TiO2 anatase, and commercial TiO2, respectively, at 280 degreesC. The increased catalytic activity of combustion for synthesized TiO2 and 1% Pt/TiO2 might be due to the increased acidity and BET surface area. The activation energies, determined from the temperature dependencies of the rate coefficients, were 16.3, 21.5, and 39.1 kcal/mol for commercial TiO2, combustion-synthesized Pt/TiO2, and anatase TiO2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic and ionic conductivities of silver selenide crystal (Ag$_2+\delta$ Se) have been measured over a range of stoichiometry through the $\alpha - \beta$ transition by using solid state electrochemical techniques. In the high temperature $\beta$-phase Ag$_2$Se shows metallic behaviour of electronic conductivity for high values of $\delta$; with decrease in $\delta$, the conductivity of the material exhibits a transition. The magnitude of change in electronic conductivity at the $\alpha - \beta$ transition is also determined by stoichiometry. Ionic conductivity of the $\beta$-phase does not vary significantly with stochiometry. Ionic conductivity of the $\beta$-does not vary significantly with stoichiometry. A model to explain the observed transport properties has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restoration, conservation and management of water resources require a thorough understanding of what constitutes a healthy ecosystem. Monitoring and assessment provides the basic information on the condition of our waterbodies. The present work details the study carried out at two waterbodies, namely, the Chamarajasagar reservoir and the Madiwala Lake. The waterbodies were selected on the basis of their current use and locations. Chamarajasagar reservoir serves the purpose of supplying drinking water to Bangalore city and is located on the outskirts of the city surrounded by agricultural and forest land. On the other hand, Madiwala lake is situated in the heart of Bangalore city receiving an influx of pollutants from domestic and industrial sewage. Comparative assessment of the surface water quality of both were carried out by instituting the various physico–chemical and biological parameters. The physico-chemical analyses included temperature, transparency, pH, electrical conductivity, dissolved oxygen, alkalinity, total hardness, calcium hardness, magnesium hardness, nitrates, phosphates, sodium, potassium and COD measurements of the given waterbody. The analysis was done based on the standard methods prescribed (or recommended) by (APHA) and NEERI. The biological parameter included phytoplankton analysis. The detailed investigations of the parameters, which are well within the tolerance limits in Chamarajasagar reservoir, indicate that it is fairly unpolluted, except for the pH values, which indicate greater alkalinity. This may be attributed to the natural causes and the agricultural runoff from the catchment. On the contrary, the limnology of Madiwala lake is greatly influenced by the inflow of sewage that contributes significantly to the dissolved solids of the lake water, total hardness, alkalinity and a low DO level. Although, the two study areas differ in age, physiography, chemistry and type of inflows, they still maintain a phytoplankton distribution overwhelmingly dominated by Cyanophyceae members,specifically Microcystis aeruginosa. These blue green algae apparently enter the waterbodies from soil, which are known to harbour a rich diversity of blue green flora with several species common to limnoplankton, a feature reported to be unique to the south Indian lakes.Chamarajasagar water samples revealed five classes of phytoplankton, of which Cyanophyceae (92.15 percent) that dominated other algal forms comprised of one single species of Microcystis aeruginosa. The next major class of algae was Chlorophyceae (3.752 percent) followed by Dinophyceae (3.51 percent), Bacillariophyceae (0.47 percent) and a sparsely available and unidentified class (0.12 percent).Madiwala Lake phytoplankton, in addition to Cyanophyceae (26.20 percent), revealed a high density of Chlorophyceae members (73.44 percent) dominated by Scenedesmus sp.,Pediastrum sp., and Euglena sp.,which are considered to be indicators of organic pollution. The domestic and industrial sewage, which finds its way into the lake, is a factor causing organic pollution. As compared to the other classes, Euglenophyceae and Bacillariophyceae members were the lowest in number. Thus, the analysis of various parameters indicates that Chamarajasagar reservoir is relatively unpolluted except for the high percentage of Microcystis aeruginosa, and a slightly alkaline nature of water. Madiwala lake samples revealed eutrophication and high levels of pollution, which is clarified by the physico–chemical analysis, whose values are way above the tolerance limits. Also, the phytoplankton analysis in Madiwala lake reveals the dominance of Chlorophyceae members, which indicate organic pollution (sewage being the causative factor).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Click chemistry has played a significant role as a rapid and versatile strategy for conjugating two molecular fragments under very mild reaction conditions. Introduction of ferrocene-derived triazole systems using click chemistry has attracted enormous interest in various fields due to its potential applications in electrochemical techniques for detection and sensing. The present discussion focuses on the synthesis of ferrocene-triazole and the importance of using a CuAAC reaction for such conjugation. Applications of ferrocene-based click reactions in conjugate chemistry, asymmetric catalysis, medicinal chemistry, host-guest interactions, and materials chemistry have been highlighted.