666 resultados para 2024 aluminum alloy
Surface roughness analysis of dental ceramics treated with hydrofl uoric acid and aluminum oxide jet
Resumo:
The aim of this study was to evaluate the surface roughness of 5 indirect restorative materials treated with hydrofluoric acid to 10%, with aluminum oxide jet and a combination of both. The specimens was prepared with 10 mm in diameter and 2 mm thickness, divided into fi ve groups: (1) Ceromer (CeseadII-Kuraray), (2) Leucite crystals ceramics (IPS EmpressIIIvoclarforcasket), (3) glass ceramic with fluorapatite (IPS D. Sign-Ivoclar), (4) lithium disilicate ceramic (IPS Empress II-Ivoclar restorations), (5) ceramics (Cergogold-Degussa). For all groups were performed the controls, and the surfaces with the 3 types of treatment. For testing roughness used the rugosimeter Taylor/Hobson-Precision, model form tracerSV-C525 high sensitivity. After confi rmation of variance analysis with a signifi cance level of 1% (p < 0.01), there was equality between the average roughness of materials from groups 1, 3 and 5, and the group 2 was different from the others. It was also found that the ceramics of the group 5 behaved similar to group 4. However the lowest average roughness was observed in group 2 ceramic. In the evaluation between the types of treatment, the aluminum oxide jet and associations and blasting with hydrofl uoric acid were similar, and different isolated hydrofl uoric acid, and 3 types of treatment signifi cantly higher than the control group. All treatments promoted superfi cial alterations in all tested materials.
Resumo:
Orthodontic mini-implants are used in clinical practice to provide efficient and aesthetically-pleasing anchorage. AIM: To evaluate the hardness Vickers hardness and chemical composition of mini-implant titanium alloys from five commercial brands. METHODS: Thirty self-drilling mini-implants, six each from the following commercial brands, were used: Neodent NEO, Morelli MOR, Sin SIN, Conexão CON, and Rocky Mountain RMO. The hardness and chemical composition of the titanium alloys were performed by the Vickers hardness test and energy dispersive X-ray spectroscopy, respectively. RESULTS: Vickers hardness was significantly higher in SIN implants than in NEO, MOR, and CON implants. Similarly, VH was significantly higher in RMO implants than in MOR and NEO ones. In addition, VH was higher in CON implants than in NEO ones. There were no significant differences in the proportions of titanium and aluminum in the mini-implant alloy of the five commercial brands. Conversely, the proportion of vanadium differed significantly between CON and MOR/NEO implants. CONCLUSIONS: Mini-implants of different brands presented distinct properties of hardness and composition of the alloy.
Resumo:
Pós-graduação em Educação - IBRC
Characterization of aluminum hydroxide (Al(OH)(3)) for use as a porogenic agent in castable ceramics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To determine whether universal primers alone can deliver similar levels of adhesion of resin cement to zirconia ceramic when compared to their application in conjunction with airborne-particle abrasion.Materials and Methods: Sintered zirconia blocks (N = 160) (Lava, 3M ESPE), (5.25 x 5.25 x 3 mm(3)) were embedded in acrylic resin, polished, and randomly distributed into 16 groups (n = 10 per group), according to the factors "universal primer" (8 levels) and "air-particle abrasion" (2 levels): 1. ctr: control, without application of a universal primer; 2. AP: Alloy Primer; 3. MP: Monobond Plus; 4. MZP: Metal Zirconia Primer; 5. MZ: MZ Primer; 6. Sg: Signum Zirconia Bond; 7. SbU: Singlebond Universal; 8. ZP: Z Prime Plus. The universal primers were also used after air abrasion (A) of zirconia to form the following 8 groups: Ctr-A, AP-A, MP-A, MZP-A, MZ-A, Sg-A, SbU-A, and ZP-A. After ultrasonic cleaning, air abrasion was performed using Al2O3 particles (110 mu m, 2.5 bar, 20 s at 10 mm) in a chairside air-abrasion device. After ultrasonic cleaning again, universal primers were applied according to each manufacturer's recommendation. The resin cement (RelyX ARC, 3M ESPE) was built up incrementally and photo-polymerized on the zirconia surface using a silicone mold (empty set = 3.5, height = 3 mm). All specimens were stored in distilled water (60 days at 37 degrees C) and then subjected to shear bond strength testing (SBS) in a universal testing machine (1 mm/min). On a separate set of zirconia specimens, contact angle measurements were made using the sessile drop technique with a goniometer after the application of universal primers on control and air-abraded zirconia surfaces. Data (MPa) were analyzed using one-way ANOVA, Tukey's test, and Student's t-test (alpha = 0.05).Results: When universal primers were used alone, SbU presented significantly higher mean SBS (19.5 +/- 5.8) that did the other primers (0 to 9.9 +/- 6.6) (p = 0.001). When air abraded, the groups AP-A (14.1 +/- 6.1), MP-A (15.9 +/- 5.4), ZP-A (16.9 +/- 7.3), SG-A (19.1 +/- 2.1), SbU-A (12 +/- 1.5) showed significant differences (p = 0.03). Adhesive performance of all universal primers was enhanced after air abrasion, with the exception of the SbU and MZ primers. After air abrasion, contact angle measurements were lower for the each primer (without air abrasion: 28.9 to 83.9; with air abrasion: 27.1 to 63.0), except for MZP.Conclusion: Air abrasion with 110 mu m Al2O3 followed by universal primer application increased the bond strength of tested resin cement to zirconia, with the exception of SbU and MZ.
Resumo:
The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Plates of NbTi (50:50, by weight) were nitrided in a nitrogen atmosphere in the temperature range 800-1000 °C for 15, 30, 60, 120 and 180 min. X-Ray diffraction and optical and electronic microscopy were used to characterize the samples. Two nitride layers were identified on the substrate: an external and continuous phase of TiN, named δ, and a deeper and discontinuous phase of Ti 2N, named ε{lunate}. The electron micrographs reveal the presence of paths rich in Nb which may be responsible for the diffusion of nitrogen into the matrix. © 1993.
Resumo:
Recasting process influence upon corrosion behavior of Co-Cr-Mo dental alloy in simulated physiological serum has been investigated using chemical and electrochemical techniques. Recast Co-Cr-Mo alloy by induction (IND) or by blowtorch (FLAME) has exhibited similar dendritic structures. Both IND and FLAME alloys have presented good corrosion resistance in physiological serum. Passivation process provides this corrosion resistance. Codissolution makes this process difficult. Passive films, formed on these alloys, have been analyzed as a dual layer consisting of an inner barrier and an outer porous layer. Passive film protective characteristics are higher in FLAME than in IND alloy. On this last alloy, the passive film is more porous due to a higher Codissolution. ©Carl Hanser Verlag, München.
Resumo:
The mechanism of electrochemical oxidation of surface reformed CuA1Ag alloys having different composition of heat treatment, in 0.5 M NaOH was studied by means of cyclic polarization, constant potential electrolysis, ICP, AA, SEM and EDX. The surface reformation consisted of a repetitive triangular potential sweep (RTPS) between H 2 and O 2 evolution at 100 mV s -1 in the working solution itself, performed in order to increase the electrode roughness and obtain a quasi-stationary I/E profile in which the potentiodynamic behaviour of copper and silver was clearly revealed. The alloys suffer aluminum dealloying after such an RTPS. The quasi-stationary cyclic polarization curve exhibits a multiplicity of current peaks which have been related to the electrochemical reactions involving the pure alloying elements. Complex potential perturbation programmes in regions having different anodic and cathodic limits allowed the study of the mechanism of the electrochemical oxidation of the surface reformed alloys and the compare with that corresponding to the pure metals. The basic differences between the electro-oxidation processes of the surface reformed CuA1Ag alloys with respect to those established for the high purity alloying metals are the splitting of the peaks corresponding to the formation of the Cu(I) and Ag(I) species. © 1991.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy and Ti alloy to bacterial biofilm formation after surface treatment was evaluated. Methods and materials: The alloy Ti–7.5Mo was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 °C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Samples were immersed in NaOH aqueous solution (5 M) and treated at 450 °C. Biofilms were grown in Ti–7.5Mo discs immersed in sterile brain heart infusion broth (BHI)containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groups was performed, atomic force microscope (AFM) and contact angle. Results: The results show that there is a 5% difference in bacterial adhesion between pure titanium and Ti–7.5Mo alloy. Conclusion: It was concluded that the greater the roughness, the greater the hydrophilic effect.