934 resultados para 2-DIMENSIONAL STRAIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomograph equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infinitesimal transformations that leave invariant a two-covariant symmetric tensor are studied. The interest of these symmetry transformations lays in the fact that this class of tensors includes the energy-momentum and Ricci tensors. We find that in most cases the class of infinitesimal generators of these transformations is a finite dimensional Lie algebra, but in some cases exhibiting a higher degree of degeneracy, this class is infinite dimensional and may fail to be a Lie algebra. As an application, we study the Ricci collineations of a type B warped spacetime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La présence de fluide météorique synchrone à l'activité du détachement (Farmin, 2003 ; Mulch et al., 2007 ; Gébelin et al., 2011), implique que les zones de cisaillement sont des systèmes ouverts avec des cellules de convections à l'échelle crustale et un intense gradient géothermique au sein du détachement (Morrison et Anderson, 1998, Gottardi et al., 2011). De plus, les réactions métamorphiques liées à des infiltrations fluides dans les zones de cisaillement extensionnel peuvent influencer les paramètres rhéologiques du système (White and Knipe, 1978), et impliquer la localisation de la déformation dans la croûte. Dans ce manuscrit, deux zones de cisaillement infiltrées par des fluides météoriques sont étudiées, l'une étant largement quartzitique, et l'autre de nature granitique ; les relations entre déformation, fluides, et roches s'appuient sur des approches structurales, microstructurales, chimiques et isotopiques. L'étude du détachement du Columbia river (WA, USA) met en évidence que la déformation mylonitique se développe en un million d'années. La phase de cisaillement principal s'effectue à 365± 30°C d'après les compositions isotopiques en oxygène du quartz et de la muscovite. Ces minéraux atteignent l'équilibre isotopique lors de leur recristallisation dynamique contemporaine à la déformation. La zone de cisaillement enregistre une baisse de température, remplaçant le mécanisme de glissement par dislocation par celui de dissolution- précipitation dans les derniers stades de l'activité du détachement. La dynamique de circulation fluide bascule d'une circulation pervasive à chenalisée, ce qui engendre localement la rupture des équilibres d'échange isotopiques. La zone de cisaillement de Bitterroot (MT, USA) présente une zone mylonitique de 600m d'épaisseur, progressant des protomylonites aux ultramylonites. L'intensité de la localisation de la déformation se reflète directement sur l'hydratation des feldspaths, réaction métamorphique majeure dite de « rock softening ». Une étude sur roche totale indique des transferts de masse latéraux au sein des mylonites, et d'importantes pertes de volume dans les ultramylonites. La composition isotopique en hydrogène des phyllosilicates met en évidence la présence (1) d'une source magmatique/métamorphique originelle, caractérisée par les granodiorites ayant conservé leur foliation magmatique, jusqu'aux protomylonites, et (2) une source météorique qui tamponne les valeurs des phyllosilicates des fabriques mylonitiques jusqu'aux veines de quartz non-déformées. Les compositions isotopiques en oxygène des minéraux illustrent le tamponnement de la composition du fluide météorique par l'encaissant. Ce phénomène cesse lors du processus de chloritisation de la biotite, puisque les valeurs des chlorites sont extrêmement négatives (-10 per mil). La thermométrie isotopique indique une température d'équilibre isotopique de la granodiorite entre 600-500°C, entre 500-300°C dans les mylonites, et entre 300 et 200°C dans les fabriques cassantes (cataclasites et veines de quartz). Basé sur les résultats issus de ce travail, nous proposons un modèle général d'interactions fluide-roches-déformation dans les zones de détachements infiltrées par des fluides météoriques. Les zones de détachements évoluent rapidement (en quelques millions d'années) au travers de la transition fragile-ductile ; celle-ci étant partiellement contrôlée par l'effet thermique des circulations de fluide météoriques. Les systèmes de détachements sont des lieux où la déformation et les circulations fluides sont couplées ; évoluant rapidement vers une localisation de la déformation, et de ce fait, une exhumation efficace. - The presence of meteoric fluids synchronous with the activity of extensional detachment zones (Famin, 2004; Mulch et al., 2007; Gébelin et al., 2011) implies that extensional systems involve fluid convection at a crustal scale, which results in high geothermal gradients within active detachment zones (Morrison and Anderson, 1998, Gottardi et al., 2011). In addition, the metamorphic reactions related to fluid infiltration in extensional shear zones can influence the rheology of the system (White and Knipe, 1978) and ultimately how strain localizes in the crust. In this thesis, two shear zones that were permeated by meteoric fluids are studied, one quartzite-dominated, and the other of granitic composition; the relations between strain, fluid, and evolving rock composition are addressed using structural, microstructural, and chemical/isotopic measurements. The study of the Columbia River detachment that bounds the Kettle core complex (Washington, USA) demonstrates that the mylonitic fabrics in the 100 m thick quartzite- dominated detachment footwall developed within one million years. The main shearing stage occurred at 365 ± 30°C when oxygen isotopes of quartz and muscovite equilibrated owing to coeval deformation and dynamic recrystallization of these minerals. The detachment shear zone records a decrease in temperature, and dislocation creep during detachment shearing gave way to dissolution-precipitation and fracturing in the later stages of detachment activity. Fluid flow switched from pervasive to channelized, leading to isotopic disequilibrium between different minerals. The Bitterroot shear zone detachment (Montana, USA) developed a 600 m thick mylonite zone, with well-developed transitions from protomylonite to ultramylonite. The localization of deformation relates directly to the intensity of feldspar hydration, a major rock- softening metamorphic reaction. Bulk-rock analyses of the mylonitic series indicate lateral mass transfer in the mylonite (no volume change), and significant volume loss in ultramylonite. The hydrogen isotope composition of phyllosilicates shows (1) the presence of an initial magmatic/metamorphic source characterized by the granodiorite in which a magmatic, and gneissic (protomylonite) foliation developed, and (2) a meteoric source that buffers the values of phyllosilicates in mylonite, ultramylonite, cataclasite, and deformed and undeformed quartz veins. The mineral oxygen isotope compositions were buffered by the host-rock compositions until chloritization of biotite started; the chlorite oxygen isotope values are negative (-10 per mil). Isotope thermometry indicates a temperature of isotopic equilibrium of the granodiorite between 600-500°C, between 500-300°C in the mylonite, and between 300 and 200°C for brittle fabrics (cataclasite and quartz veins). Results from this work suggest a general model for fluid-rock-strain feedbacks in detachment systems that are permeated by meteoric fluids. Phyllosilicates have preserved in their hydrogen isotope values evidence for the interaction between rock and meteoric fluids during mylonite development. Fluid flow generates mass transfer along the tectonic anisotropy, and mylonites do not undergo significant volume change, except locally in ultramylonite zones. Hydration of detachment shear zones attends mechanical grain size reduction and enhances strain softening and localization. Self-exhuming detachment shear zones evolve rapidly (a few million years) through the transition from ductile to brittle, which is partly controlled by the thermal effect of circulating surface fluids. Detachment systems are zones in the crust where strain and fluid flow are coupled; these systems. evolve rapidly toward strain localization and therefore efficient exhumation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Direct noninvasive visualization of the coronary vessel wall may enhance risk stratification by quantifying subclinical coronary atherosclerotic plaque burden. We sought to evaluate high-resolution black-blood 3D cardiovascular magnetic resonance (CMR) imaging for in vivo visualization of the proximal coronary artery vessel wall. METHODS AND RESULTS: Twelve adult subjects, including 6 clinically healthy subjects and 6 patients with nonsignificant coronary artery disease (10% to 50% x-ray angiographic diameter reduction) were studied with the use of a commercial 1.5 Tesla CMR scanner. Free-breathing 3D coronary vessel wall imaging was performed along the major axis of the right coronary artery with isotropic spatial resolution (1.0x1.0x1.0 mm(3)) with the use of a black-blood spiral image acquisition. The proximal vessel wall thickness and luminal diameter were objectively determined with an automated edge detection tool. The 3D CMR vessel wall scans allowed for visualization of the contiguous proximal right coronary artery in all subjects. Both mean vessel wall thickness (1.7+/-0.3 versus 1.0+/-0.2 mm) and wall area (25.4+/-6.9 versus 11.5+/-5.2 mm(2)) were significantly increased in the patients compared with the healthy subjects (both P<0.01). The lumen diameter (3.6+/-0.7 versus 3.4+/-0.5 mm, P=0.47) and lumen area (8.9+/-3.4 versus 7.9+/-3.5 mm(2), P=0.47) were similar in both groups. CONCLUSIONS: Free-breathing 3D black-blood coronary CMR with isotropic resolution identified an increased coronary vessel wall thickness with preservation of lumen size in patients with nonsignificant coronary artery disease, consistent with a "Glagov-type" outward arterial remodeling. This novel approach has the potential to quantify subclinical disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HYPOTHESIS: During total shoulder arthroplasty (TSA), humeral head subluxation may be difficult to manage. Furthermore, there is a risk for postoperative recurrence of subluxation, affecting the outcome of TSA. An accurate evaluation of the subluxation is necessary to evaluate this risk. Currently, subluxation is measured in 2 dimensions (2D), usually relative to the glenoid face. The goal of this study was to extend this measure to 3 dimensions (3D) to compare glenohumeral and scapulohumeral subluxation and to evaluate the association of subluxation with the glenoid version. MATERIALS AND METHODS: The study analyzed 112 computed tomography scans of osteoarthritic shoulders. We extended the usual 2D definition of glenohumeral subluxation, scapulohumeral subluxation, and glenoid version by measuring their orientation in 3D relative to the scapular plane and the scapular axis. We evaluated statistical associations between subluxation and version in 2D and 3D. RESULTS: Orientation of subluxation and version covered all sectors of the glenoid surface. Scapulohumeral subluxation and glenoid version were highly correlated in amplitude (R(2) = 0.71; P < .01) and in orientation (R(2) = 0.86; P < .01). Approximately every degree of glenoid version induced 1% of scapulohumeral subluxation in the same orientation of the version. Conversely, glenohumeral subluxation was not correlated to glenoid version in 2D or in 3D. CONCLUSIONS: Orientation of the humeral subluxation is rarely within the arbitrary computed tomography plane and should therefore be measured in 3D to detect out-of-plane subluxation. Scapulohumeral subluxation and glenoid version measured in 3D could bring valuable information for decision making during TSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transepithelial sodium transport via alveolar epithelial Na(+) channels (ENaC) and Na(+),K(+)-ATPase constitutes the driving force for removal of alveolar edema fluid. Alveolar hypoxia associated with pulmonary edema may impair ENaC activity and alveolar Na(+) absorption through a decrease of ENaC subunit expression at the apical membrane of alveolar epithelial cells (AECs). Here, we investigated the mechanism(s) involved in this process in vivo in the β-Liddle mouse strain mice carrying a truncation of β-ENaC C-terminus abolishing the interaction between β-ENaC and the ubiquitin protein-ligase Nedd4-2 that targets the channel for endocytosis and degradation and in vitro in rat AECs. Hypoxia (8% O2 for 24 h) reduced amiloride-sensitive alveolar fluid clearance by 69% in wild-type mice but had no effect in homozygous mutated β-Liddle littermates. In vitro, acute exposure of AECs to hypoxia (0.5-3% O2 for 1-6 h) rapidly decreased transepithelial Na(+) transport as assessed by equivalent short-circuit current Ieq and the amiloride-sensitive component of Na(+) current across the apical membrane, reflecting ENaC activity. Hypoxia induced a decrease of ENaC subunit expression in the apical membrane of AECs with no change in intracellular expression and induced a 2-fold increase in α-ENaC polyubiquitination. Hypoxic inhibition of amiloride-sensitive Ieq was fully prevented by preincubation with the proteasome inhibitors MG132 and lactacystin or with the antioxidant N-acetyl-cysteine. Our data strongly suggest that Nedd4-2-mediated ubiquitination of ENaC leading to endocytosis and degradation of apical Na(+) channels is a key feature of hypoxia-induced inhibition of transepithelial alveolar Na(+) transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: A standardized three-dimensional ultrasonographic (3DUS) protocol is described that allows fetal face reconstruction. Ability to identify cleft lip with 3DUS using this protocol was assessed by operators with minimal 3DUS experience. Material and Methods: 260 stored volumes of fetal face were analyzed using a standardized protocol by operators with different levels of competence in 3DUS. The outcomes studied were: (1) the performance of post-processing 3D face volumes for the detection of facial clefts; (2) the ability of a resident with minimal 3DUS experience to reconstruct the acquired facial volumes, and (3) the time needed to reconstruct each plane to allow proper diagnosis of a cleft. Results: The three orthogonal planes of the fetal face (axial, sagittal and coronal) were adequately reconstructed with similar performance when acquired by a maternal-fetal medicine specialist or by residents with minimal experience (72 vs. 76%, p = 0.629). The learning curve for manipulation of 3DUS volumes of the fetal face corresponds to 30 cases and is independent of the operator's level of experience. Discussion: The learning curve for the standardized protocol we describe is short, even for inexperienced sonographers. This technique might decrease the length of anatomy ultrasounds and improve the ability to visualize fetal face anomalies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have amplified a (CA)n:(GT)n microsatellite from the TNF promoters of a panel of mouse strains using the polymerase chain reaction. The length of the microsatellites was polymorphic, with eight alleles observed among 15 inbred strains bearing seven distinct H-2 haplotypes, and four outbred strains. In B10 congenic strains, the TNF allele detected by microsatellite polymorphism segregated with the MHC, and in recombinant haplotypes (NOD, NZW), it segregated with H-2D. The TNF allele found in the NZW strain (H-2z) was distinct from those of all other haplotypes, consistent with the hypothesis that this strain may carry a genetic defect in TNF production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La planification scanographique (3D) a démontré son utilité pour une reconstruction anatomique plus précise de la hanche (longueur du fémur, centre de rotation, offset, antéversion et rétroversion). Des études ont montré que lors de la planification 2D 50% seulement correspondaient à l'implant définitif du fémur alors que dans une autre étude ce taux s'élevait à 94% pour une planification 3D. Les erreurs étaient liées à l'agrandissement des radiographies. L'erreur sur la taille de la tige est liée à l'estimation inadéquate de la morphologie osseuse ainsi qu'à la densité osseuse. L'erreur de l'antéversion, augmentée par l'inclinaison du bassin, a pu être éliminée par la planification 3D et l'offset restauré dans 98%. Cette étude est basée sur une nouvelle technique de planification scanographique en trois dimensions pour une meilleure précision de la reconstruction de la hanche. Le but de cette étude est de comparer l'anatomie post-opératoire à celle préopératoire en comparant les tailles d'implant prévu lors de la planification 3D à celle réellement utilisée lors de l'opération afin de déterminer l'exactitude de la restauration anatomique avec étude des différents paramètres (centre de rotation, densité osseuse, L'offset fémoral, rotations des implants, longueur du membre) à l'aide du Logiciel HIP-PLAN (Symbios) avec évaluation de la reproductibilité de notre planification 3D dans une série prospective de 50 patients subissant une prothèse totale de hanche non cimentée primaire par voie antérieure. La planification pré-opératoire a été comparée à un CTscan postopératoire par fusion d'images. CONCLUSION ET PRESPECTIVE Les résultats obtenus sont les suivants : La taille de l'implant a été prédit correctement dans 100% des tiges, 94% des cupules et 88% des têtes (longueur). La différence entre le prévu et la longueur de la jambe postopératoire était de 0,3+2,3 mm. Les valeurs de décalage global, antéversion fémorale, inclinaison et antéversion de la cupule étaient 1,4 mm ± 3,1, 0,6 ± 3,3 0 -0,4 0 ± 5 et 6,9 ° ± 11,4, respectivement. Cette planification permet de prévoir la taille de l'implant précis. Position de la tige et de l'inclinaison de la cupule sont exactement reproductible. La planification scanographique préopératoire 3D permet une évaluation précise de l'anatomie individuelle des patients subissant une prothèse totale de hanche. La prédiction de la taille de l'implant est fiable et la précision du positionnement de la tige est excellente. Toutefois, aucun avantage n'est observée en termes d'orientation de la cupule par rapport aux études impliquant une planification 2D ou la navigation. De plus amples recherches comparant les différentes techniques de planification pré-opératoire à la navigation sont nécessaire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties.