875 resultados para 16s rRNA sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Doenças Tropicais - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genera Exiguobacterium and Psychrobacter have been frequently detected in and isolated from polar permafrost and ice. These two genera have members that can grow at temperatures as low as -5 and -10 degrees C, respectively. We used quantitative PCR (Q-PCR) to quantify members of these genera in 54 soil or sediment samples from polar, temperate and tropical environments to determine to what extent they are selected by cold environments. These results were further analyzed by multiple linear regression to identify the most relevant environmental factors corresponding to their distribution. Exiguobacterium was detected in all three climatic zones at similar densities, but was patchier in the temperate and tropical samples. Psychrobacter was present in almost all polar samples, was at highest densities in Antarctica sediment samples, but was in very low densities and infrequently detected in temperate and tropical soils. Clone libraries, specific for the 16S rRNA gene for each genus, were constructed from a sample from each climatic region. The clone libraries were analyzed for alpha and beta diversities, as well as for variation in population structure by using analysis of molecular variance. Results confirm that both genera were found in all three climatic zones; however, Psychrobacter populations seemed to be much more diverse than Exiguobacterium in all three climatic zones. Furthermore, Psychrobacter populations from Antarctica are different from those in Michigan and Puerto Rico, which are similar to each other. The ISME Journal (2009) 3, 658-665; doi: 10.1038/ismej.2009.25; published online 26 March 2009

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. Citation: Jimenez DJ, Andreote FD, Chaves D, Montana JS, Osorio-Forero C, et al. (2012) Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes. PLoS ONE 7(12): e52069. doi:10.1371/journal.pone.0052069

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cyanobacterial community colonizing phyllosphere in a well-preserved Brazilian mangrove ecosystem was assessed using cultivation-independent molecular approaches. Leaves of trees that occupy this environment (Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa) were collected along a transect beginning at the margin of the bay and extending upland. The results demonstrated that the phyllosphere of R.similar to mangle and L.similar to racemosa harbor similar assemblages of cyanobacteria at each point along the transect. A.similar to schaueriana, found only in the coastal portions of the transect, was colonized by assemblages with lower richness than the other trees. However, the results indicated that spatial location was a stronger driver of cyanobacterial community composition than plant species. Distinct cyanobacterial communities were observed at each location along the coast-to-upland transect. Clone library analysis allowed identification of 19 genera of cyanobacteria and demonstrated the presence of several uncultivated taxa. A predominance of sequences affiliated with the orders Nostocales and Oscillatoriales was observed, with a remarkable number of sequences similar to genera Symphyonemopsis/Brasilonema (order Nostocales). The results demonstrated that phyllosphere cyanobacteria in this mangrove forest ecosystem are influenced by environmental conditions as the primary driver at the ecosystem scale, with tree species exerting some effect on community structure at the local scale.