966 resultados para 13368-045
Resumo:
We present evidence that both geophysical and thermodynamic conditions in sea ice are important in understanding pathways of accumulation or rejection of hexachlorocyclohexanes (HCHs). a- and g-HCH concentrations and a-HCH enantiomer fractions have been measured in various ice classes and ages from the Canadian High Arctic. Mean a-HCH concentrations reached 0.642 ± 0.046 ng/L in new and young ice (<30 cm), 0.261 ±0.015 ng/L in the first-year ice (30-200 cm) and 0.208 ±0.045 in the old ice (>200 cm). Mean g-HCH concentrations were 0.066 ± 0.006 ng/L in new and young ice, 0.040 ±0.002 ng/L in the first-year ice and 0.040 ±0.007 ng/L in the old ice. In general, a-HCH concentrations and vertical distributions were highly dependent on the initial entrapment of brine and the subsequent desalination process. g-HCH levels and distribution in sea ice were not as clearly related to ice formation processes. During the year, first-year ice progressed from freezing (accumulation) to melting (ablation). Relations between the geophysical state of the sea ice and the vertical distribution of HCHs are described as ice passes through these thermodynamic states. In melting ice, which corresponded to the algal bloom period, the influence of biological processes within the bottom part of the ice on HCH concentrations and a-HCH enantiomer fraction is discussed using both univariate and multivariate approaches.
Resumo:
During the third part of the Atlantic Expedition 1969 from 10° S to 60° N along 30° W, measurements of the complete size distribution of atmospheric aeosols over the whole size range from about 10**-7 to 10**-2 cm radius were made. This was possibe by the simultaneous operation of different methods which are critically discussed. The results obtained are the first of its kind and are of general interest despite some methodical shortcomings. North of the equator the ship passed through air masses of west African origin and the influence of Sahara dust on the Marine aerosols could be documented in a unique way. The Sahara dust component was restricted to the size range of 10**-5 to 10**-3 radius. Throughout the voyage particles up to 10**-2 radius were always found to be present, similar to findings over continents. Of special interest is the observation that the size distribution extends to very small particles, suggesting continuous aerosol production over the ocean.