664 resultados para 13077-096
Resumo:
Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.
Resumo:
The mineralogy of the lower Oligocene to Quaternary sediments of core CRP-2/2A drilled on the continental shelf of McMurdo Sound in Ross Sea, Antarctica, was examined by the X-ray diffraction method. Quartz, plagioclase feldspar and K-feldspar are the most important non-clay minerals. Pyroxene and amphibole occur in minor amounts throughout the core. The composition of the sediments points to an origin in the Transantarctic Mountains for the majority of the detrital components. There, the plutonic and metamorphic rocks of the basement, the sediments of the Beacon Supergroup and the volcanic rocks of the Ferrar Group could serve as possible source lithologies. The distribution of the detrital minerals reflects a long-term history of successive erosion and valley incision. During the deposition of the lower part of the core, the detrital minerals were probably mainly derived from the sediments of the Beacon Supergroup, as indicated by the high quartz but relatively low feldspar abundances. In the upper c. 350 m of the core, the influence of a source in the basement became stronger and results in lower quartz contents but increasing abundance of feldspar. Some diagenetic alteration of the sediments is indicated by the occurrence of zeolites below c. 320 mbsf and of opal-CT above c. 320 mbsf.
Resumo:
The stratigraphic distribution, assemblage content, paleoecology and age of foraminifera recovered in fourteen of sixteen samples from the 5.63 m thick CRP-2 (Lithostratigraphic Unit 2.2) are discussed. LSU 2.2 comprises four discrete lithologic beds. The upward sequence is informally referred to as the lower sand bed, diamicton bed, middle sand bed, and upper sand bed and it is surmised that these four units are closely related in time. The lower sand bed (~1.5m), which overlies lower Miocene sediments and from which it is separated by the Ross Sea Unconformity, contains traces of recycled Miocene diatoms but is otherwise barren of biogenic material. The diamicton bed (~2.42 m) contains 21 species of benthic foraminifera, with assemblages consistently dominated by Cassidulinoides porrectus, Ammoelphidiella antarctica, Rosalina cf. globularis, Cibicides refulgens, and Ehrenbergina glabra. The overlying middle sand bed (~1.9 m) contains 13 species. with C. porrectus and E. glabra dominant and A. antarctica less common than in the underlying diamicton bed. The upper sand bed (~0.46 m) contains four species and very few tests. The diamicton bed and middle sand bed assemblages are considered to be near in situ thanatocoenoses; and sediments interpreted as marine in origin but influenced by hyposaline waters and nearby ice. Planktic taxa are absent, perhaps indicating the presence of tidewater glaciers, sea ice and/or hyposaline surface waters. The small assemblage in the upper sand bed is more problematic and may be recycled. On the basis of foraminifera in the diamicton and middle sand beds. LSU 2.2 is assigned to the Pliocene. The overlying diamicton in LSU 2.1 contains abundant Quaternary foraminifera.
Resumo:
From the upper 300 m of CRP-2/2A, twenty-six samples of diamicts and deformation structures have been thin sectioned. These have been analysed for texture, structure, diagenesis and plasmic fabric. The combination of certain microstructures (e.g. turbate and linear) and plasmic fabric development is indicative of grounded ice. Clear evidence for two grounded ice events (three samples) was found in the upper Oligocene part of the core. The interpretation of ten more samples is less certain, but as for CRP-1, is taken to point to grounded ice as well. There is a strong correlation between these indications for grounded ice and the basal part of cycles in the sequence stratigraphy.
Resumo:
Clay-mineral distributions in the Arctic Ocean and the adjacent Eurasian shelf areas are discussed to identify source areas and transport pathways of terrigenous material in the Arctic Ocean. The main clay minerals in Eurasian Arctic Ocean sediments are illite and chlorite. Smectite and kaolinite occur in minor amounts in these sediments, but show strong variations in the shelf areas. These two minerals are therefore reliable in reconstructions of source areas of sediments from the Eurasian Arctic. The Kara Sea and the western part of the Laptev Sea are enriched in smectite, with highest values of up to 70% in the deltas of the Ob and Yenisey rivers. Illite is the dominant clay mineral in all the investigated sediments except for parts of the Kara Sea. The highest concentrations with more than 70% illite occur in the East Siberian Sea and around Svalbard. Chlorite represents the clay mineral with lowest concentration changes in the Eastern Arctic, ranging between 10 and 25%. The main source areas for kaolinite in the Eurasian Arctic are Mesozoic sedimentary rocks on Franz-Josef Land islands. Based on clay-mineral data, transport of the clay fraction via sea ice is of minor importance for the modern sedimentary budget in the Arctic basins.