911 resultados para ~1H-NMR
Resumo:
无水碳酸钾存在下6-氯-5,12-萘并萘醌与4-羟基偶氮苯在干燥DMF中反应的主要产物在某些反应条件下不是6[4-(苯基偶氮基)苯氧基]-5,12-萘并萘醌(1)。该未知反应产物2经核磁共振方法研究证实是6-(N,N-二甲氨基)-5,12-萘并萘醌。本文对化合物2的~1H-和~(13)C化学位移、偶合信息和结构作了详细归属,并推测其反应进程,实验结果表明,化合物2是由化合物1与溶剂DMF反应生成。
Resumo:
前文报导了Ln(TTHA)(Ln=La,Y和Lu)配合物的NMR研究.对其溶液结构做了较清楚的描述。本文涉及双稀土配合物的NMR研究。在Lu(TTHA)配合物的~1H谱中,配体六组羧亚甲基氢呈六组AB谱。向其加入过量
Resumo:
本研究测定了2-乙基己基膦酸单2-乙基己基酯(HEH/EHP)与镧系元素镧、铈、镨、钕、钐、铕、钬、铒、镱、镥的1H、(13)C、(31)P核磁共振谱。对HEH/EHP的碳骨架进行了详细归属,并根据(31)PNMR谱峰的积分面积,推测了萃合物可能的配位络合比,(HEH/EHP与Ln(Ⅲ)之比)。对铕、镱、镥为6,对铒为5,对钬、钐为4。
Resumo:
利用~1H和~(13)C NMR技术研究了水溶液中稀土离子与二肽甘氨酰丙氨酸(以下简称甘-丙二肽,记为GA)的配位作用。由稀土诱导位移的浓度依赖关系计算了Yb与甘-丙二肽配合物的稳定常数。测定了重稀土离子Dy~(3+)、Ho~(3+)、Er~(3+)、Tr~(3+)和Yb~(3+)作用下GA的~(13)C诱导位移,并根据Reuben方法对稀土诱导位移进行了线性相关分析。对配合物中配体骨架构象的模拟分析指出,Cl-C_2-N-C_3为旁式,C_2-N-C_3-C_4和C_5-C_2-N-C_3为反交叉式。系统比较了4种含甘氨酰二肽的侧基大小对配合物稳定常数、配体构象和配合物溶液结构的影响。
Resumo:
本文测定了在三种不同稀土离子(镧La~(3+)、钬Ho~(3+)和镱Yb~(3+)的水溶液中甘氨酰-缬氨酸的~1H和~(13)C稀土诱导位移。计算了Ho、Yb与甘氨酰-缬氨酸配合物的稳定常数,讨论了稀土与该配体的配位作用及对配合物构象进行研究,发现配位后的甘氨酰-缬氨酸以一种空间位阻较小的伸展构象存在。
Resumo:
仲碳伯胺N_(1923)萃取铈(Ⅳ)的~1H,~(15)N-NMR研究表明,在萃取铈(Ⅳ)时也同时萃取H_2O和H_2SO_4进入有机相,当铈(Ⅳ)浓度较高时,铈(Ⅳ)与N_(1923)生成配合物。
Resumo:
本文测量了在7种不同稀土离子(La~(3+)、Pr~(3+)、Nd~(3+)、Dy~(3+)、Ho~(3+)、Er~(3+)和Tm~(3+))的水溶液中蛋氨酸~(13)C稀土诱导位移。利用稀土诱导位移对蛋氨酸稀土配合物构象的模拟结果表明,蛋氨酸通过离子化的羧基与稀土离子配位,Ln~(3+)—O长度为2.7A在配合物中,蛋氨酸以伸展状态存在,C_0-C_α-C_β-C_γ和C_α-C_β-C_γ-S成反式构象,C_β-C_γ-S-C_δ成旁式构象。根据稀土诱导位移方法建立的构象模型符合~1H邻位质子偶合常数和~(13)C顺磁弛豫速率的结果。
Resumo:
The title compound, N'-(4-methoxybenzylidene)-2-(1H-1,2,4-triazol-1-yl)acetohydrazide, was synthesized and its structure was confirmed by means of IR, MS,H-1 NMR and elemental analysis. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound has a low antifungal activity.
Resumo:
N'-(4-fluorobenzylidene)-2-(1H-1 2,4-triazole-1-yl) acetohydrazide was synthesized by the reaction of 4-fluorobenzaldehyde with 2-(1H-1 2,4-triazole-1-yl) acetohydrazide. The structure was confirmed via elemental analysis, MS, H-1 NMR, IR, and X-ray diffraction. It crystallized in a monoclinic system with space group P2 (1) a = 0.4905 (1) nm, b = 0.8160 (2) nm, c = 1.4105 (3) nm, beta = 93.33 (3)degrees, Z = 2, V = 0.5636 (2) nm(3), D-c = 1.457 Mg/m(3), mu = 0.112 mm(-1), F(000) = 256, and final R-1 = 0.0685. Several intermolecular hydrogen-bond interactions existed in the crystal structure, facilitating the stabilization of the compound.
Resumo:
A novel triazole derivative 4-(2-hydrobenzylideneamino)-3-(1, 2, 4-triazol-4-ylmethyl)-1H-1, 2, 4-triazole-5 (4H)-thione(1) was synthesized and characterized using elemental analysis, MR, and H-1 NMR, and its crystal structure was determined via X-ray single crystal diffraction analysis. Crystal data: monoclinic, P2 (1)/c, a = 0.83335 (9) nm, b = 1. 49777 (16) run, c = 1. 14724 (12) nm, beta = 107. 990 (2)degrees, D = 1. 470 Mg/m(3), and Z = 4. The geometries and the vibrational frequencies were determined using the density functional theory(DFT) method at the B3LYP/6-31G* level. To demonstrate the accuracy of the reaction route of compound 1, one of the important intermediates was also tested using the same method. The structural parameters of the two compounds calculated using the DFT study are close to those of the crystals, and the harmonic vibrations of the two compounds computed via the DFT method are in good agreement with those in the observed IR spectral data. The thermodynamic properties of the title compound were calculated, and the compound shows a good structural stability at normal temperature. The test results of biological activities show that it has a certain bactericidal ability.
Resumo:
总结了作者所测定过的多取代酮及其糖甙类衍生物的1H和13CNMR位移数据.着重就取代基与结构的关系进行了探讨.认为多取代酮1位和8位取代情况直接影响着其他位置的化学位移数值.这一现象可以直接用于该类化合物的结构鉴定.
Resumo:
本文在Bruker AM-400 NMR谱仪上,在不同温度下研究了线形脑啡肽(N-Tyr~1-Gly~2-Gly~3-Phe~4-Leu~5)在DMSO中的NMR溶液构象。由NMR测试结果,得到了NH化学位移温度梯度系数、扭转角φ、χ'约束和~1H-~1H NOE距离约束,用目标函数法计算了脑啡肽的溶液构象,分析了优势边链构象。研究结果指明了多肽骨架的柔变性且处于构象平衡中。
Resumo:
The main scope of this work was to evaluate the metabolic effects of anticancer agents (three conventional and one new) in osteosarcoma (OS) cells and osteoblasts, by measuring alterations in the metabolic profile of cells by nuclear magnetic resonance (NMR) spectroscopy metabolomics. Chapter 1 gives a theoretical framework of this work, beginning with the main metabolic characteristics that globally describe cancer as well as the families and mechanisms of action of drugs used in chemotherapy. The drugs used nowadays to treat OS are also presented, together with the Palladium(II) complex with spermine, Pd2Spm, potentially active against cancer. Then, the global strategy for cell metabolomics is explained and the state of the art of metabolomic studies that analyze the effect of anticancer agents in cells is presented. In Chapter 2, the fundamentals of the analytical techniques used in this work, namely for biological assays, NMR spectroscopy and multivariate and statistical analysis of the results are described. A detailed description of the experimental procedures adopted throughout this work is given in Chapter 3. The biological and analytical reproducibility of the metabolic profile of MG-63 cells by high resolution magic angle spinning (HRMAS) NMR is evaluated in Chapter 4. The metabolic impact of several factors (cellular integrity, spinning rate, temperature, time and acquisition parameters) on the 1H HRMAS NMR spectral profile and quality is analysed, enabling the definition of the best acquisition parameters for further experiments. The metabolic consequences of increasing number of passages in MG-63 cells as well as the duration of storage are also investigated. Chapter 5 describes the metabolic impact of drugs conventionally used in OS chemotherapy, through NMR metabolomics studies of lysed cells and aqueous extracts analysis. The results show that MG-63 cells treated with cisplatin (cDDP) undergo a strong up-regulation of lipid contents, alterations in phospholipid constituents (choline compounds) and biomarkers of DNA degradation, all associated with cell death by apoptosis. Cells exposed to doxorubicin (DOX) or methotrexate (MTX) showed much slighter metabolic changes, without any relevant alteration in lipid contents. However, metabolic changes associated with altered Krebs cycle, oxidative stress and nucleotides metabolism were detected and were tentatively interpreted at the light of the known mechanisms of action of these drugs. The metabolic impact of the exposure of MG-63 cells and osteoblasts to cDDP and the Pd2Spm complex is described in Chapter 6. Results show that, despite the ability of the two agents to bind DNA, the metabolic consequences that arise from exposure to them are distinct, namely in what concerns to variation in lipid contents (absent for Pd2Spm). Apoptosis detection assays showed that, differently from what was seen for MG-63 cells treated with cDDP, the decreased number of living cells upon exposure to Pd2Spm was not due to cell death by apoptosis or necrosis. Moreover, the latter agent induces more marked alterations in osteoblasts than in cancer cells, while the opposite seemed to occur upon cDDP exposure. Nevertheless, the results from MG-63 cells exposure to combination regimens with cDDP- or Pd2Spm-based cocktails, described in Chapter 7, revealed that, in combination, the two agents induce similar metabolic responses, arising from synergy mechanisms between the tested drugs. Finally, the main conclusions of this thesis are summarized in Chapter 8, and future perspectives in the light of this work are presented.
Resumo:
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.
Resumo:
13C-2H correlation NMR spectroscopy (13C-2H COSY) permits the identification of 13C and 2H nuclei which are connected to one another by a single chemical bond via the sizeable 1JCD coupling constant. The practical development of this technique is described using a 13C-2H COSY pulse sequence which is derived from the classical 13C-1H correlation experiment. An example is given of the application of 13C-2H COSY to the study of the biogenesis of natural products from the anti-malarial plant Artemisia annua, using a doubly-labelled precursor molecule. Although the biogenesis of artemisinin, the anti-malarial principle from this species, has been extensively studied over the past twenty years there is still no consensus as to the true biosynthetic route to this important natural product – indeed, some published experimental results are directly contradictory. One possible reason for this confusion may be the ease with which some of the metabolites from A. annua undergo spontaneous autoxidation, as exemplified by our recent in vitro studies of the spontaneous autoxidation of dihydroartemisinic acid, and the application of 13C-2H COSY to this biosynthetic problem has been important in helping to mitigate against such processes. In this in vivo application of 13C-2H COSY, [15-13C2H3]-dihydroartemisinic acid (the doubly-labelled analogue of the natural product from this species which was obtained through synthesis) was fed to A. annua plants and was shown to be converted into several natural products which have been described previously, including artemisinin. It is proposed that all of these transformations occurred via a tertiary hydroperoxide intermediate, which is derived from dihyroartemisinic acid. This intermediate was observed directly in this feeding experiment by the 13C-2H COSY technique; its observation by more traditional procedures (e.g., chromatographic separation, followed by spectroscopic analysis of the purified product) would have been difficult owing to the instability of the hydroperoxide group (as had been established previously by our in vitro studies of the spontaneous autoxidation of dihydroartemisinic acid). This same hydroperoxide has been reported as the initial product of the spontaneous autoxidation of dihydroartemisinic acid in our previous in vitro studies. Its observation in this feeding experiment by the 13C-2H COSY technique, a procedure which requires the minimum of sample manipulation in order to achieve a reliable identification of metabolites (based on both 13C and 2H chemical shifts at the 15-position), provides the best possible evidence for its status as a genuine biosynthetic intermediate, rather than merely as an artifact of the experimental procedure.