963 resultados para zirconia ceramic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for aesthetic restorations has increased during the last years. Dental ceramics are a successful alternative for some cases because of aesthetics and biocompatibility. Therefore, the aim of this literature review was to present the factors necessary to fabricate all-ceramic restorations with aesthetics similar to natural dentition. A search of English-language peer-review literature was completed using MEDLINE database from 1975 to 2009 including the keywords "aesthetic," "metal-free crown," "all-ceramic," and "color." It was observed that several factors influence aesthetics of all-ceramic restorations. Color scale, light source during color evaluation, characteristic of core material, color of supporting tooth, presence of root post, and type of cement are clinical factors that may influence color of the restorations. Laboratorial factors as technique for ceramic condensation, thickness, temperature, and number of firing cycles also influence the result of these crowns. Although several clinical and laboratorial factors influence aesthetics of all-ceramic restorations, the aesthetic success and longevity of these restorations depend on the integration with surrounding periodontal tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of a ceramic fused to cobalt-chromium alloy or gold alloy.Materials and Methods: Metallic bars (n = 120) were made (25 mm x 3 mm x 0.5 mm): 60 with gold alloy and 60 with Co-Cr. At the central area of the bars (8 mm x 3 mm), a layer of opaque ceramic and then two layers of glass ceramic (Vita VM13, Vita Zahnfabrick) were fired onto it (thickness: 1 mm). Ten specimens from each alloy group were randomly allocated to a surface treatment [(tungsten bur or air-particle abrasion (APA) with Al(2)O(3) at 10 mm or 20 mm away)] and mechanico-thermal cycling (no cycling or mechanically loaded 20,000 cycles; 10 N distilled water at 37 degrees C and then thermocycled 3000 cycles; 5 degrees C to 55 degrees C, dwell time 30 seconds) combination. Those specimens that did not undergo mechanico-thermal cyclingwere stored inwater (37 degrees C) for 24 hours. Bond strength was measured using a three-point bend test, according to ISO 9693. After the flexural strength test, failure types were noted. The data were analyzed using three factor-ANOVA and Tukey's test (alpha = 0.05).Results: There were no significant differences between the flexural bond strength of gold and Co-Cr groups (42.64 +/- 8.25 and 43.39 +/- 10.89 MPa, respectively). APA 10 and 20 mm away surface treatment (45.86 +/- 9.31 and 46.38 +/- 8.89 MPa, respectively) had similar mean flexural strength values, and both had significantly higher bond strength than tungsten bur treatment (36.81 +/- 7.60 MPa). Mechanico-thermal cycling decreased the mean flexural strength values significantly for all six alloy-surface treatment combinations tested when compared to the control groups. The failure type was adhesive in the metal/ceramic interface for specimens surface treated only with the tungsten bur, and mixed for specimens surface treated with APA 10 and 20 mm.Conclusions: Considering the levels adopted in this study, the alloy did not affect the bond strength; APA with Al(2)O(3) at 10 and 20 mm improved the flexural bond strength between ceramics and alloys used, and the mechanico-thermal cycling of metal-ceramic specimens resulted in a decrease of bond strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate the influence of different protocols for resin cement removal during cementation on biofilm formation.Methods: Twenty-eight ceramic blocks, which were injected under pressure, were placed over enamel blocks obtained from freshly extracted bovine incisors. The ceramic blocks were cemented to the enamel blocks using a dual-cured resin cement and the excess resin was removed according to the experimental group: TS: Teflon spatula; BR: brush; BR+: brush and polishing; SB+: scalpel blade and polishing. After autoclaving, the samples were colonised by incubation in a sucrose broth suspension standardised with Streptococcus mutans in microaerophilic stove. Specimens were quantitatively analysed for bacterial adherence at the adhesive interface using confocal laser scanning microscopy and counting the colony forming units, and qualitatively analysed using SEM. The roughness (Ra/Rz/RSm) was also analysed. Data were analysed by 1-way ANOVA and Tukey's test (5%).Results: The roughness values ranged from 0.96 to 1.69 mu m for Ra (p > 0.05), from 11.59 to 22.80 mu m for Rz (p = 0.02 < 0.05) and from 293.2 to 534.3 mu m for RSm (p = 0.00). Bacterial adhesion varied between 1,974,000 and 2,814,000 CFU/ml (p = 0.00). Biofilm mean thickness ranged from 0.477 and 0.556 mu m (p > 0.05), whilst the biovolume values were between 0.388 and 0.547 mu m(3)/mu m(2) (p = 0.04). Lower values for roughness, bacterial adhesion, biofilm thickness and biovolume were found with BR, whilst TS presented the highest values for most of the parameters. SEM images confirmed the quantitative values.Conclusions: The restoration margin morphology and interface roughness affects bacterial accumulation. The brush technique promoted less bacterial colonisation at the adhesive interface than did the other removal methods.Clinical significance: The brush technique seems to be a good option for removing the excess resin cement after adhesive cementation in clinical practice, as indicated by its better results with lower bacterial colonisation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of cyclical mechanical loading on the bond strength of a fiber and a zirconia post bonded to root dentin.Materials and Methods: Forty single-rooted human teeth (maxillary incisors and canines) were sectioned, and the root canals were prepared at 12 mm. Twenty randomly seleced specimens received a quartz fiber post (FRC) (D.T. Light-Post) and 20 others received a zirconia post (ZR) (Cosmopost). The posts were resin luted (All Bond 2 + resin cement Duo-link) and each specimen was embedded in epoxy resin inside a PVC cylinder. Ten specimens with FRC post and 10 specimens with ZR post were submitted to fatigue testing (2,000,000 cycles; load: 50 N; angle of 45 degrees; frequency: 8 Hz), while the other 20 specimens were not fatigued. Thus, 4 groups were formed: G1: FRC+O cycles; G2: FRC+2,000,000 cycles; G3: ZR+O cycles; G4: ZR+2,000,000 cycles. Later, the specimens were cut perpendicular to their long axis to form 2-mm-thick disk-shaped samples (4 sections/specimen), which were submitted to the push-out test (1 mm/min). The mean bond strength values (MPa) were calculated for each tooth (n = 10) and data were submitted to statistical analysis (alpha = 0.05).Results: Two-way ANOVA revealed that the bond strength was significantly affected by mechanical cycling (p = 0.0014) and root post (p = 0.0325). The interaction was also statistically significant (p = 0.0010). Tukey's test showed that the mechanical cycling did not affect the bonding of FRC to root dentin, while fatigue impaired the bonding of zirconium to root dentin.Conclusion: (1) the bond strength of the FRC post to root dentin was not reduced after fatigue testing, whereas the bonding of the zirconia post was significantly affected by the fatigue. (2) Cyclical mechanical loading appears to damage the bond strength of the rigid post only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of the elapsed time (ET) after nonvital bleaching (NVB) and sodium ascorbate application (10%) (SAA) on the shear bond strength of dentin to ceramic.Materials and Methods: Bovine incisors were selected, internally bleached (35% carbamide peroxide) for 9 days and submitted to the following treatments (n = 10): G1, G2, G3-luting after 1, 7, and 14 days; G4, G5, and G6-luting after SAA, 1, 7, and 14 days, respectively. G7 and G8 were not bleached: G7-luting 24 hours after access cavity sealing; G8-luting 24 hours after access cavity sealing after SAA. After NVB, the vestibular dentin was exposed and flattened. The SAA was applied to the dentin (G4, G5, G6, G8) for 10 minutes, and it was then washed and dried. The dentin was etched (37% phosphoric acid), and an adhesive system (Single Bond 2) was applied. Feldspathic ceramic discs (VM7; 4-mm diameter, 3-mm thick) were luted with a dual-resin agent (RelyX ARC, 3M ESPE Dental Products, St. Paul, MN). After 24 hours, specimens were submitted to shear test on a universal testing machine. The data (MPa) were submitted to ANOVA and Dunnet's test (5%).Results: The means (+/- SD) obtained were (MPa): G1 (14 +/- 4.5), G2 (14.6 +/- 3.1), G3 (14 +/- 3.7), G4 (15.5 +/- 4.6), G5 (19.87 +/- 4.5), G6 (16.5 +/- 3.7), G7 (22.8 +/- 6.2), and G8 (18.9 +/- 5.4). SAA had a significant effect on bond strength (p = 0.0054). The effect of ET was not significant (p = 0.1519). G5 and G6 presented higher values than the other bleached groups (p < 0.05) and similar to G7 and G8 (p > 0.05).Conclusions: After NVB, adhesive luting to dentin is recommended after 7 days if sodium ascorbate has been applied prior to dentin hybridization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)