981 resultados para uptake kinetics
Resumo:
Surface initiated polymerization (SIP) is a valuable tool in synthesizing functional polymer brushes, yet the kinetic understanding of SIP lags behind the development of its application. We apply quartz crystal microbalance (QCM) to address two issues that are not fully addressed yet play a central role in the rational design of functional polymer brushes, namely quantitative determination of the kinetics and the initiator efficiency (IE) of SIP. SIP are monitored online using QCM. Two quantitative frequency-thickness (f-T) relations make the direct determination and comparison of the rate of polymerization possible even for different monomers. Based on the bi-termination model, the kinetics of SIP is simply described by two variables, which are related to two polymerization constants, namely a = 1/(k (p,s,app)-[M][R center dot](0)) and b = k (t,s,app)/(k (p,s,app)[M]). Factors that could alter the kinetics of SIP are studied, including (i) the molecular weight of monomers, (ii) the solvent used, (iii) the initial density of the initiator, (iv) the concentration of monomer, [M], and (v) the catalyst system (ratio among the ingredients, metal, ligands, and additives). The dynamic nature of IE is also described by these two variables, IE = a/(a + bt). Instead of the molecular weight and the polydispersity, we suggest that film thickness, the two kinetic parameters (a and b), and the initial density of the initiator and IE be the parameters that characterize ultra-thin polymer brushes. Besides the kinetics study of SIP, the reported method has many other applications, for example, in the fast screening of catalyst system for SIP and other polymerization systems.
Resumo:
The production of ethylbenzene from the alkylation of dilute ethylene in fee off-gases with benzene has been commercialized in China over a newly developed catalyst composed of ZSM-5/ZSM-11 co-crystallized zeolite. The duration of an operation cycle of the commercial catalyst could be as long as 180 days. The conversion of ethylene could attain higher than 95%, while the amount of coke deposited on the catalyst was only about 10 wt.%. Thermogravimetry (TG) was used to study the coking behavior of the catalyst during the alkylation of fee off-gas with benzene to ethylbenzene. Based on effects of reaction time, reaction temperature, reactants and products on coking during the alkylation process, it is found that the coking rate during the alkylation procedure follows the order: ethylbenzene > ethylene > propylene > benzene for single component, and benzene-ethylene > benzene-propylene for bi-components under the same reaction condition. Furthermore, the coking kinetic equations for benzene-ethylene, benzene-propylene and ethylbenzene were established. (C) 2003 Elsevier B.V. All rights reserved.