957 resultados para underwater acoustics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel shape recognition algorithm was developed to autonomously classify the Northern Pacific Sea Star (Asterias amurenis) from benthic images that were collected by the Starbug AUV during 6km of transects in the Derwent estuary. Despite the effects of scattering, attenuation, soft focus and motion blur within the underwater images, an optimal joint classification rate of 77.5% and misclassification rate of 13.5% was achieved. The performance of algorithm was largely attributed to its ability to recognise locally deformed sea star shapes that were created during the segmentation of the distorted images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new approach for creating and implementing an ad-hoc underwater acoustic sensor network based on connecting a small processor to the serial port of a commercial CDMA acoustic modem. The processor acts as a "node controller" providing the networking layer that the modems lack. The ad-hoc networking protocol is based on a modified dynamic source routing (DSR) approach and can be configured for maximising information throughput or minimising energy expenditure. The system was developed in simulation and then evaluated during field trials using a 10 node deployment. Experimental results show reliable multi-hop networking under a variety of network configurations, with the added ability to determine internode ranges to within 1.5 m for localisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an extension to the Rapidly-exploring Random Tree (RRT) algorithm applied to autonomous, drifting underwater vehicles. The proposed algorithm is able to plan paths that guarantee convergence in the presence of time-varying ocean dynamics. The method utilizes 4-Dimensional, ocean model prediction data as an evolving basis for expanding the tree from the start location to the goal. The performance of the proposed method is validated through Monte-Carlo simulations. Results illustrate the importance of the temporal variance in path execution, and demonstrate the convergence guarantee of the proposed methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the development and experimental evaluation of a novel vision-based Autonomous Surface Vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an Autonomous Underwater Vehicle, on the water’s surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force obstacle avoidance and docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. The system performance is demonstrated through real-world experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to relate and easy to understand. However such queries are not easily utilised within intelligent surveillance systems as they are difficult to transform into a representation that can be searched for automatically in large camera networks. In this paper we propose a novel approach that transforms such a semantic query into an avatar that is searchable within a video stream, and demonstrate state-of-the-art performance for locating a subject in video based on a description.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In transport networks, Origin-Destination matrices (ODM) are classically estimated from road traffic counts whereas recent technologies grant also access to sample car trajectories. One example is the deployment in cities of Bluetooth scanners that measure the trajectories of Bluetooth equipped cars. Exploiting such sample trajectory information, the classical ODM estimation problem is here extended into a link-dependent ODM (LODM) one. This much larger size estimation problem is formulated here in a variational form as an inverse problem. We develop a convex optimization resolution algorithm that incorporates network constraints. We study the result of the proposed algorithm on simulated network traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies have found that when the state-of-the-art probabilistic linear discriminant analysis (PLDA) speaker verification systems are trained using out-domain data, it significantly affects speaker verification performance due to the mismatch between development data and evaluation data. To overcome this problem we propose a novel unsupervised inter dataset variability (IDV) compensation approach to compensate the dataset mismatch. IDV-compensated PLDA system achieves over 10% relative improvement in EER values over out-domain PLDA system by effectively compensating the mismatch between in-domain and out-domain data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the feasibility of using vertical light pipes to naturally illuminate the central core of a multilevel building not reached by window light. The challenges addressed were finding a method to extract and distribute equal amounts of light at each level and designing collectors to improve the effectiveness of vertical light pipes in delivering low elevation sunlight to the interior. Extraction was achieved by inserting partially reflecting cones within transparent sections of the pipes at each floor level. Theory was formulated to estimate the partial reflectance necessary to provide equal light extraction at each level. Designs for daylight collectors formed from laser cut panels tilted above the light pipe were developed and the benefits and limitations of static collectors as opposed to collectors that follow the sun azimuth investigated. Performance was assessed with both basic and detailed mathematical simulation and by observations made with a five level model building under clear sky conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Field and Service Robotics (FSR) conference is a single track conference with a specific focus on field and service applications of robotics technology. The goal of FSR is to report and encourage the development of field and service robotics. These are non-factory robots, typically mobile, that must operate in complex and dynamic environments. Typical field robotics applications include mining, agriculture, building and construction, forestry, cargo handling and so on. Field robots may operate on the ground (of Earth or planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans, importantly the elderly and sick, to help them with their lives. The first FSR conference was held in Canberra, Australia, in 1997. Since then the meeting has been held every 2 years in Asia, America, Europe and Australia. It has been held in Canberra, Australia (1997), Pittsburgh, USA (1999), Helsinki, Finland (2001), Mount Fuji, Japan (2003), Port Douglas, Australia (2005), Chamonix, France (2007), Cambridge, USA (2009), Sendai, Japan (2012) and most recently in Brisbane, Australia (2013). This year we had 54 submissions of which 36 were selected for oral presentation. The organisers would like to thank the international committee for their invaluable contribution in the review process ensuring the overall quality of contributions. The organising committee would also like to thank Ben Upcroft, Felipe Gonzalez and Aaron McFadyen for helping with the organisation and proceedings. and proceedings. The conference was sponsored by the Australian Robotics and Automation Association (ARAA), CSIRO, Queensland University of Technology (QUT), Defence Science and Technology Organisation Australia (DSTO) and the Rio Tinto Centre for Mine Automation, University of Sydney.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.