1000 resultados para truss networks
Resumo:
Research on men’s networks and homosociality in and around organisations can produce knowledge on organisational power relations, and contribute to the efforts to promote equality in working life. The search for a conceptual framework to study these issues arises in this paper from my ongoing work on men's social networks and gendered power in and around organisations. Men give each other social support through networks in which formal and informal relationships intermingle, but networks are also contexts of competition and oppression, and of construction of masculinities that are in hierarchical relations with each other and with femininities. For studying the networks men have with each other in work organisations I suggest a broader starting point that contextualises these homosocial networks with men’s other personal relations, and integrates different perspectives deriving from social network analysis, critical studies on men and organisational studies.
Resumo:
A method is presented to model server unreliability in closed queuing networks. Breakdowns and repairs of servers, assumed to be time-dependent, are modeled using virtual customers and virtual servers in the system. The problem is thus converted into a closed queue with all reliable servers and preemptive resume priority centers. Several recent preemptive priority approximations and an approximation of the one proposed are used in the analysis. This method has approximately the same computational requirements as that of mean-value analysis for a network of identical dimensions and is therefore very efficient
Resumo:
This paper deals with the development and performance evaluation of three modified versions of a scheme proposed for medium access control in local area networks. The original scheme implements a collision-free and fair medium arbitration by using a control wire in conjunction with a data bus. The modifications suggested in this paper are intended to realize the multiple priority function in local area networks.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
It has been shown in an earlier paper that I-realizability of a unate function F of up to six variables corresponds to ' compactness ' of the plot of F on a Karnaugh map. Here, an algorithm has been presented to synthesize on a Karnaugh map a non-threahold function of up to Bix variables with the minimum number of threshold gates connected in cascade. Incompletely specified functions can also be treated. No resort to inequalities is made and no pre-processing (such as positivizing and ordering) of the given switching function is required.
Resumo:
In a storage system where individual storage nodes are prone to failure, the redundant storage of data in a distributed manner across multiple nodes is a must to ensure reliability. Reed-Solomon codes possess the reconstruction property under which the stored data can be recovered by connecting to any k of the n nodes in the network across which data is dispersed. This property can be shown to lead to vastly improved network reliability over simple replication schemes. Also of interest in such storage systems is the minimization of the repair bandwidth, i.e., the amount of data needed to be downloaded from the network in order to repair a single failed node. Reed-Solomon codes perform poorly here as they require the entire data to be downloaded. Regenerating codes are a new class of codes which minimize the repair bandwidth while retaining the reconstruction property. This paper provides an overview of regenerating codes including a discussion on the explicit construction of optimum codes.
Resumo:
Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.
Resumo:
In earlier work, nonisomorphic graphs have been converted into networks to realize Multistage Interconnection networks, which are topologically nonequivalent to the Baseline network. The drawback of this technique is that these nonequivalent networks are not guaranteed to be self-routing, because each node in the graph model can be replaced by a (2 × 2) switch in any one of the four different configurations. Hence, the problem of routing in these networks remains unsolved. Moreover, nonisomorphic graphs were obtained by interconnecting bipartite loops in a heuristic manner; the heuristic nature of this procedure makes it difficult to guarantee full connectivity in large networks. We solve these problems through a direct approach, in which a matrix model for self-routing networks is developed. An example is given to show that this model encompases nonequivalent self-routing networks. This approach has the additional advantage in that the matrix model itself ensures full connectivity.
Resumo:
The world of mapping has changed. Earlier, only professional experts were responsible for map production, but today ordinary people without any training or experience can become map-makers. The number of online mapping sites, and the number of volunteer mappers has increased significantly. The development of the technology, such as satellite navigation systems, Web 2.0, broadband Internet connections, and smartphones, have had one of the key roles in enabling the rise of volunteered geographic information (VGI). As opening governmental data to public is a current topic in many countries, the opening of high quality geographical data has a central role in this study. The aim of this study is to investigate how is the quality of spatial data produced by volunteers by comparing it with the map data produced by public authorities, to follow what occurs when spatial data are opened for users, and to get acquainted with the user profile of these volunteer mappers. A central part of this study is OpenStreetMap project (OSM), which aim is to create a map of the entire world by volunteers. Anyone can become an OpenStreetMap contributor, and the data created by the volunteers are free to use for anyone without restricting copyrights or license charges. In this study OpenStreetMap is investigated from two viewpoints. In the first part of the study, the aim was to investigate the quality of volunteered geographic information. A pilot project was implemented by following what occurs when a high-resolution aerial imagery is released freely to the OpenStreetMap contributors. The quality of VGI was investigated by comparing the OSM datasets with the map data of The National Land Survey of Finland (NLS). The quality of OpenStreetMap data was investigated by inspecting the positional accuracy and the completeness of the road datasets, as well as the differences in the attribute datasets between the studied datasets. Also the OSM community was under analysis and the development of the map data of OpenStreetMap was investigated by visual analysis. The aim of the second part of the study was to analyse the user profile of OpenStreetMap contributors, and to investigate how the contributors act when collecting data and editing OpenStreetMap. The aim was also to investigate what motivates users to map and how is the quality of volunteered geographic information envisaged. The second part of the study was implemented by conducting a web inquiry to the OpenStreetMap contributors. The results of the study show that the quality of OpenStreetMap data compared with the data of National Land Survey of Finland can be defined as good. OpenStreetMap differs from the map of National Land Survey especially because of the amount of uncertainty, for example because of the completeness and uniformity of the map are not known. The results of the study reveal that opening spatial data increased notably the amount of the data in the study area, and both the positional accuracy and completeness improved significantly. The study confirms the earlier arguments that only few contributors have created the majority of the data in OpenStreetMap. The inquiry made for the OpenStreetMap users revealed that the data are most often collected by foot or by bicycle using GPS device, or by editing the map with the help of aerial imageries. According to the responses, the users take part to the OpenStreetMap project because they want to make maps better, and want to produce maps, which have information that is up-to-date and cannot be found from any other maps. Almost all of the users exploit the maps by themselves, most popular methods being downloading the map into a navigator or into a mobile device. The users regard the quality of OpenStreetMap as good, especially because of the up-to-dateness and the accuracy of the map.
Resumo:
We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Theta(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Theta(root n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Theta(1) time units per sample, the delay increases to Theta(root n log n). The number of transmissions in both cases is Theta(n) per histogram sample. The achieved Theta(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Theta(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.
Resumo:
We present a distributed algorithm that finds a maximal edge packing in O(Δ + log* W) synchronous communication rounds in a weighted graph, independent of the number of nodes in the network; here Δ is the maximum degree of the graph and W is the maximum weight. As a direct application, we have a distributed 2-approximation algorithm for minimum-weight vertex cover, with the same running time. We also show how to find an f-approximation of minimum-weight set cover in O(f2k2 + fk log* W) rounds; here k is the maximum size of a subset in the set cover instance, f is the maximum frequency of an element, and W is the maximum weight of a subset. The algorithms are deterministic, and they can be applied in anonymous networks.
Resumo:
This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.