912 resultados para transgenic tobacco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of sustainable development forms the basis for a wide variety of international and national policy making. World population continues to expand at about 80 M people per year, while the demand for natural resources continues to escalate. Important policies, treaties and goals underpin the notion of sustainable development. In this paper, we discuss and evaluate a range of scientific literature pertaining to the use of transgenic crops in meeting sustainable development goals. It is concluded that a considerable body of evidence has accrued since the first commercial growing of transgenic crops, which suggests that they can contribute in all three traditional pillars of sustainability, i.e. economically, environmentally and socially. Management of herbicide-tolerant and insect-resistant transgenic crops to minimize the risk of weeds and pests developing resistance is discussed, together with the associated concern about the risk of loss of biodiversity. As the world population continues to rise, the evidence reviewed here suggests it would be unwise to ignore transgenic crops as one of the tools that can help meet aspirations for increasingly sustainable global development.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

World oilseed trade consists of many closely substitutable commodities, with canola and cottonseed as possible alternatives to soya beans for many purposes. Transgenic events in all three crops have been widely adopted, particularly in North and South America, for compelling economic or agronomic reasons. Despite the close attention from organizations concerned about the potential consequences of transgenic crop adoption, there appears to be no substantiated evidence of transgenic DNA in meat or milk products when such crops are fed to livestock. The global area of these transgenic crops continues to increase. No transgenic canola, cotton or soya bean crops are permitted for commercial cultivation in Europe, and although transgenic feed resources are permitted for import, importers risk shipments being denied entry if the traces of an unauthorized transgenic crop are detected. These tight controls can mean that livestock farmers in the EU are disadvantaged due to restricted access to cheaper feed or higher feed costs, and they are thus loosing a degree of competitive advantage. This paper reviews the extent to which transgenic soya beans have become the ‘conventional’ method of cultivation elsewhere, and notes implications this has for livestock nutrition, traceability and economics within the EU. The paper concludes with discussion regarding the implications for the EU of delayed acceptance of newly available transgenic traits.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To maintain the sustainability of agriculture, it is imperative that the reliance of crops on inorganic phosphorus (P) fertilizers is reduced. One approach is to improve the ability of crop plants to acquire P from organic sources. Transgenic plants that produce microbial phytases have been suggested as a possible means to achieve this goal. However, neither the impact of heterologous expression of phytase on the ecology of microorganisms in the rhizosphere nor the impact of rhizosphere microorganisms on the efficacy of phytases in the rhizosphere of transgenic plants has been tested. In this paper, we demonstrate that the presence of rhizosphere microorganisms reduced the dependence of plants oil extracellular secretion of phytase from roots when grown in a P-deficient soil. Despite this, the expression of phytase in transgenic plants had little or no impact on the microbial community structure as compared with control plant lines, whereas soil treatments, such as the addition of inorganic P, had large effects. The results demonstrate that soil microorganisms are explicitly involved in the availability of P to plants and that the microbial community in the rhizosphere appears to be resistant to the impacts of single-gene changes in plants designed to alter rhizosphere biochemistry and nutrient cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.