973 resultados para tight junctions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For d >= 2, Walkup's class K (d) consists of the d-dimensional simplicial complexes all whose vertex-links are stacked (d - 1)-spheres. Kalai showed that for d >= 4, all connected members of K (d) are obtained from stacked d-spheres by finitely many elementary handle additions. According to a result of Walkup, the face vector of any triangulated 4-manifold X with Euler characteristic chi satisfies f(1) >= 5f(0) - 15/2 chi, with equality only for X is an element of K(4). Kuhnel observed that this implies f(0)(f(0) - 11) >= -15 chi, with equality only for 2-neighborly members of K(4). Kuhnel also asked if there is a triangulated 4-manifold with f(0) = 15, chi = -4 (attaining equality in his lower bound). In this paper, guided by Kalai's theorem, we show that indeed there is such a triangulation. It triangulates the connected sum of three copies of the twisted sphere product S-3 (sic) S-1. Because of Kuhnel's inequality, the given triangulation of this manifold is a vertex-minimal triangulation. By a recent result of Effenberger, the triangulation constructed here is tight. Apart from the neighborly 2-manifolds and the infinite family of (2d + 3)-vertex sphere products Sd-1 X S-1 (twisted for d odd), only fourteen tight triangulated manifolds were known so far. The present construction yields a new member of this sporadic family. We also present a self-contained proof of Kalai's result. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 K

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M, T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distribution over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P, Q) >= phi(Q, P) for all mixed matchings Q. We show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilization of nanocrystalline grain sizes by second phase particles can facilitate superplasticity at high strain rates and/or low temperatures. A metastable single phase nano-Ni-P alloy prepared by electrodeposition, with a grain size of similar to 6 nm, transforms to a nanoduplex structure at T> 673 K, with similar to 4 vol.% Ni3P particles at triple junctions and within Ni grains. The nanoduplex microstructure is reasonably stable up to 777 K, and the growth of Ni grains occurs in a coupled manner with the growth of Ni3P particles such that the ratio of the two mean sizes (Z) is essentially constant. High temperature tests for a grain size of 290 nm reveal superplastic behavior with an optimum elongation to failure of 810% at a strain rate of 7 x 10(-4) s(-1) and a relatively low temperature of 777 K. Superplastic deformation enhances both grain growth and the ratio Z, implying that grain boundary sliding (GBS) significantly influences the microstructural dynamics. Analysis of the deformation processes suggests that superplasticity is associated with GBS controlled by the overcoming of intragranular particles by dislocations, so that deformation is independent of the grain size. The nano-Ni-P alloy exhibits lower ductility than nano-Ni due to concurrent cavitation caused by higher stresses. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known from temperature-programmed desorption studies that the binding energy of thiophene over Mo/gamma-Al2O3 and Co-Mo/gamma-Al2O3, hydrodesulfurization catalysts, is lower in the presence of hydrogen. The adsorption of thiophene on clean and hydrogen-adsorbed MoS2 was modelled using extended Huckel tight binding band structure calculations. In the eta(1) adsorption configuration the calculations show a lower binding energy for adsorption on the hydrogen-preadsorbed surface similar to that observed experimentally. The lowering is due to an increased occupancy of the Mo density of states in the presence of hydrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCI and CIF elimination reactions from CH2Cl-CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6-311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, E-a DFT gives good results for HF elimination, within 4-8 W mol(-1) from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCI elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCI elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and E., the rate constants could be fit to a lower A and E-a (as given by experimental fitting, corresponding to a tight TS) or to larger A and E-a (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for CIF elimination is determined to be 607 U mol(-1) at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X-CH2Y (X,Y = F/Cl) are included for comparison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the results of a transmission electron microscopy investigation on WC–6 wt% ZrO2nanocomposite, spark plasma sintered at 1300 °C, for varying times of up to 20 min. The primary aim of this work was to understand the evolution of microstructure during such a sintering process. The investigation revealed the presence of nanocrystalline ZrO2particles (30–50 nm) entrapped within submicron WC grains. In addition, relatively coarser ZrO2(60–100 nm) particles were observed to be either attached to WC grain boundaries or located at WC triple grain junctions. The evidence of the presence of a small amount of W2C, supposed to have been formed due to sintering reaction between WC and ZrO2, is presented here. Detailed structural investigation indicated that ZrO2in the spark plasma sintered nanocomposite adopted an orthorhombic crystal structure, and the possible reasons for o-ZrO2formation are explained. The increase in kinetics of densification due to the addition of ZrO2is believed to be caused by the enhanced diffusion kinetics in the presence of nonstoichiometric nanocrystalline ZrO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent paper, we combined the technique of bosonization with the concept of a Rayleigh dissipation function to develop a model for resistances in one-dimensional systems of interacting spinless electrons Europhys. Lett. 93, 57007 (2011)]. We also studied the conductance of a system of three wires by using a current splitting matrix M at the junction. In this paper, we extend our earlier work in several ways. The power dissipated in a three-wire system is calculated as a function of M and the voltages applied in the leads. By combining two junctions of three wires, we examine a system consisting of two parallel resistances. We study the conductance of this system as a function of the M matrices and the two resistances; we find that the total resistance is generally quite different from what one expects for a classical system of parallel resistances. We do a sum over paths to compute the conductance of this system when one of the two resistances is taken to be infinitely large. We study the conductance of a three-wire system of interacting spin-1/2 electrons, and show that the charge and spin conductances can generally be different from each other. Finally, we consider a system of two wires that are coupled by a dissipation function, and we show that this leads to a current in one wire when a voltage bias is applied across the other wire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of guessing a random string is revisited. The relation-ship between guessing without distortion and compression is extended to the case when source alphabet size is countably in¯nite. Further, similar relationship is established for the case when distortion allowed by establishing a tight relationship between rate distortion codes and guessing strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences critical system design objectives like area, power and performance. Hence the embedded system designer performs a complete memory architecture exploration to custom design a memory architecture for a given set of applications. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of exhaustive-search based memory exploration at the outer level and a two step based integrated data layout for SPRAM-Cache based architectures at the inner level. We present a two step integrated approach for data layout for SPRAM-Cache based hybrid architectures with the first step as data-partitioning that partitions data between SPRAM and Cache, and the second step is the cache conscious data layout. We formulate the cache-conscious data layout as a graph partitioning problem and show that our approach gives up to 34% improvement over an existing approach and also optimizes the off-chip memory address space. We experimented our approach with 3 embedded multimedia applications and our approach explores several hundred memory configurations for each application, yielding several optimal design points in a few hours of computation on a standard desktop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive Anode is coated with a Buffer Layer (ABL). Here, the effects of a metal (gold) or oxide (molybdenum oxide) ABL are reported, as a function of the Highest Occupied Molecular Orbital (HOMO) of different electron donors. The results indicate that a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). Therefore we show that the MoO(3) oxide has a wider field of application as ABL than gold. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim