893 resultados para therapy
Resumo:
Abstract
PURPOSE:
The optimal duration over which lung SBRT should be delivered is unknown. We conducted a randomized pilot study in patients treated with four fractions of lung SBRT delivered over 4 or over 11days.
METHODS:
Patients with a peripheral solitary lung tumor (NSCLC or pulmonary metastasis) ?5cm were eligible. For NSCLC lung tumors ?3cm, a dose of 48Gy in 4 fractions was used, otherwise 52Gy in 4 fractions was delivered. Patients were randomized to receive treatment over 4 consecutive days or over 11days. The primary end-point was acute grade ?2 toxicity. Secondary end-points included quality of life (QOL) assessed using the EORTC QLQ-C30 and QLQ-LC13 questionnaires.
RESULTS:
Fifty four patients were enrolled. More patients in the 11day group had respiratory symptoms at baseline. 55.6% patients treated over 4days and 33.3% of patients treated over 11days experienced acute grade ?2 toxicity (p=0.085). Dyspnea, fatigue and coughing domains were worse in the 11day group at baseline. At 1 and 4months, more patients in the 4day group experienced a clinically meaningful worsening in the dyspnea QOL domain compared to the 11day group (44.5% vs 15.4%, p=0.02; 38.5% vs 12.0%, p=0.03, respectively). However, raw QOL scores were not different at these time-points between treatment groups.
CONCLUSIONS:
Grade 2 or higher acute toxicity was more common in the 4day group, approaching statistical significance. More patients treated on 4 consecutive days reported a clinically meaningful increase in dyspnea, although interpretation of these results is challenging due to baseline imbalance between treatment groups. Larger studies are required to validate these results.
Resumo:
Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.