903 resultados para the mitochondrial signaling pathway


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decapentaplegic (Dpp) plays an essential role in Drosophila development, and analyses of the Dpp signaling pathway have contributed greatly to understanding of the actions of the TGF-β superfamily. Intracellular signaling of the TGF-β superfamily is mediated by Smad proteins, which are now grouped into three classes. Two Smads have been identified in Drosophila. Mothers against dpp (Mad) is a pathway-specific Smad, whereas Daughters against dpp (Dad) is an inhibitory Smad genetically shown to antagonize Dpp signaling. Here we report the identification of a common mediator Smad in Drosophila, which is closely related to human Smad4. Mad forms a heteromeric complex with Drosophila Smad4 (Medea) upon phosphorylation by Thick veins (Tkv), a type I receptor for Dpp. Dad stably associates with Tkv and thereby inhibits Tkv-induced Mad phosphorylation. Dad also blocks hetero-oligomerization and nuclear translocation of Mad. We also show that Mad exists as a monomer in the absence of Tkv stimulation. Tkv induces homo-oligomerization of Mad, and Dad inhibits this step. Finally, we propose a model for Dpp signaling by Drosophila Smad proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1β, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter–luciferase constructs identified a unique −555/−513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (−624/−556 bp) essential for PKC and cAMP stimulation. DNA–protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor–like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination between the activities of organelles and the nucleus requires the exchange of signals. Using Chlamydomonas, we provide evidence that plastid-derived chlorophyll precursors may replace light in the induction of two nuclear heat-shock genes (HSP70A and HSP70B) and thus qualify as plastidic signal. Mutants defective in the synthesis of Mg-protoporphyrin IX were no longer inducible by light. Feeding of Mg-protoporphyrin IX or its dimethyl ester to wild-type or mutant cells in the dark resulted in induction. The analysis of HSP70A promoter mutants that do or do not respond to light revealed that these chlorophyll precursors specifically activate the light signaling pathway. Activation of gene expression was not observed when protoporphyrin IX, protochlorophyllide, or chlorophyllide were added. A specific interaction of defined chlorophyll precursors with factor(s) that regulate nuclear gene expression is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent data indicate that sustained elevations in plasma insulin suppress the mRNA for IRS-2, a component of the insulin signaling pathway in liver, and that this deficiency contributes to hepatic insulin resistance and inappropriate gluconeogenesis. Here, we use nuclear run-on assays to show that insulin inhibits transcription of the IRS-2 gene in the livers of intact rats. Insulin also inhibited transcription of a reporter gene driven by the human IRS-2 promoter that was transfected into freshly isolated rat hepatocytes. The human promoter contains a heptanucleotide sequence, TGTTTTG, that is identical to the insulin response element (IRE) identified previously in the promoters of insulin-repressed genes. Single base pair substitutions in this IRE decreased transcription of the IRS-2-driven reporter in the absence of insulin and abolished insulin-mediated repression. We conclude that insulin represses transcription of the IRS-2 gene by blocking the action of a positive factor that binds to the IRE. Sustained repression of IRS-2, as occurs in chronic hyperinsulinemia, contributes to hepatic insulin resistance and accelerates the development of the diabetic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the mechanisms by which electrical activity may generate long-term responses in the nervous system, we examined how activation of voltage-sensitive calcium channels (VSCCs) can stimulate the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Calcium influx through L-type VSCCs leads to tyrosine phosphorylation of the adaptor protein Shc and its association with the adaptor protein Grb2, which is bound to the guanine nucleotide exchange factor Sos1. In response to calcium influx, Shc, Grb2, and Sos1 inducibly associate with a 180-kDa tyrosine-phosphorylated protein, which was determined to be the epidermal growth factor receptor (EGFR). Calcium influx induces tyrosine phosphorylation of the EGFR to levels that can activate the MAPK signaling pathway. Thus, ion channel activation stimulates growth factor receptor signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dorsoventral axis is established early in Xenopus development and may involve signaling by Wnts, a family of Wnt1-protooncogene-related proteins. The protein kinase shaggy functions in the wingless/Wnt signaling pathway, which operates during Drosophila development. To assess the role of a closely related kinase, glycogen synthase kinase 3 beta (GSK-3 beta), in vertebrate embryogenesis, we cloned a cDNA encoding a Xenopus homolog of GSK-3 beta (XGSK-3 beta). XGSK-3 beta-specific transcripts were detected by Northern analysis in Xenopus eggs and early embryos. Microinjection of the mRNA encoding a catalytically inactive form of rat GSK-3 beta into a ventrovegetal blastomere of eight-cell embryos caused ectopic formation of a secondary body axis containing a complete set of dorsal and anterior structures. Furthermore, in isolated ectodermal explants, the mutant GSK-3 beta mRNA activated the expression of neural tissue markers. Wild-type XGSK-3 beta mRNA suppressed the dorsalizing effects of both the mutated GSK-3 beta and Xenopus dishevelled, a proposed upstream signaling component of the same pathway. These results strongly suggest that XGSK-3 beta functions to inhibit dorsoventral axis formation in the embryo and provide evidence for conservation of the Wnt signaling pathway in Drosophila and vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos anos, notou-se aumento da incidência de carcinoma espinocelular de orofaringe (CECOF) associado ao HPV. Sabe-se que CECOF associado ao HPV apresenta melhor prognóstico do que CECOF não infectado por HPV. Inúmeros estudos em carcinoma cervical demonstram alterações de TLRs, isto provavelmente devido às associações das oncoproteínas E6 e E7 com estes receptores. Em humanos, existem 10 TLRs identificados, os quais colaboram na resposta imune contra bactérias, fungos e vírus, bem como colaboram na promoção ou regressão do tumor. Esta influência do TLR na carcinogênese tem sido alvo de inúmeros estudos devido à ligação entre inflamação e o câncer. O presente trabalho teve como objetivo verificar diferenças na expressão e função de receptores Toll-like em carcinoma espinocelular de orofaringe (CECOF). Para tal, foram utilizados trinta e sete espécimes diagnosticados como CECOF e a expressão imuno-histoquímica das proteínas p16 e TLR4 analisadas. Duas linhagens de CECOF HPV16 + e duas CECOF HPV-. foram utilizadas para análise da expressão de TLR1-10, IL-6 e IL-8, por qPCR. A detecção dos principais TLRs (TLR1, TLR2, TLR6 e TLR4) foi feita por citometria de fluxo. Para ativação da via de sinalização de TLR2, e posterior análise da expressão de IL6 e IL8, as células foram estimuladas com peptidoglicano. Para verificar a expressão e função de TLR4, as células foram estimuladas com LPS e LPS UP para posterior análise de IL-6 e IL-8, por ELISA. Os resultados demonstraram diferenças na expressão gênica de TLR1 e TLR6 entre as linhagens HPV- e o grupo HPV+ e diferenças na expressão proteica de TLR9. TLR2 apresentou aumento da expressão proteica em todas as linhagens e demonstra desencadeamento da resposta imune, com secreção de IL6 e IL8 nas linhagens HPV- (SCC72 e SCC89) e em uma das linhagens HPV+ (SCC2). Interessantemente, TLR4 não apresentou diferenças significativas na expressão gênica e proteica. Entretanto, as linhagens HPV+ não demonstraram resposta pró-inflamatória mesmo quando estimuladas com LPS e LPS ultra puro, agonista específico de TLR4. Assim, este trabalho contribui para estabelecer o perfil da expressão dos receptores Toll-like em linhagens celulares de CECOF HPV- e HPV+, e aponta para alterações ocorridas na via de sinalização mediada por TLR4. Além disso, nossos resultados abrem portas para futuros estudos na avaliação de alterações causadas no sistema imune inato pelo HPV, em carcinomas espinocelulares de orofaringe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diversos mecanismos celulares estão associados à patogênese do Carcinoma Epidermoide de Cabeça e Pescoço (CECP). Algumas dessas alterações envolvem proteínas pertencentes à via de sinalização do Akt, e o fator de transcrição NF-kB, o qual têm importante papel na fisiologia normal e no câncer. A proteína COX-2, descrita em processos inflamatórios, também participa da carcinogênese e está associada com a via de sinalização do Akt e com o NF-kB. Dendrímeros são uma forma única de nanotecnologia, surgindo como nanotransportadores com a capacidade de penetrar na célula tumoral liberando drogas quimioterápicas em seu interior. Os benefícios desta tecnologia são o aumento da eficicácia do princípio ativo utilizado e a redução dos seus efeitos secundários tóxicos. O Celecoxibe, antiinflamatório não esteroidal, inibidor seletivo da COX-2, tem se mostrado um importante agente anticarcinogênico, no entanto seu mecanismo de ação no CECP não é totalmente compreendido. Neste trabalho, um Dendrímero de Poliglicerol associado ao Celecoxibe (PGLD-celecoxibe) foi sintetizado e caracterizado por técnicas de espectroscopia ¹H-RMN, ¹³C-RMN, Maldi-Tof, TLC e DSC. Além disso, o conjugado foi testado in vitro em três linhagens celulares de CECP. O PGLD-Celecoxibe foi sintetizado com sucesso e promoveu a redução da dose capaz de inibir a proliferação celular, reduzindo o IC 50 do Celecoxibe de forma significativa em todas as linhagens celulares, se aproximando da dose sérica alcançada por este medicamento, resultado corroborado pelo Ensaio de Migração Celular. O mecanismo de morte celular observado foi a apoptose, associada a diminuição significativa da expressão de COX-2 ou por uma via alternativa independente. Alguns dos grupos tratados apresentaram alteração na expressão das proteínas pAkt e NF-kB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problématique: L’hypertension artérielle essentielle, facteur de risque majeur dans le développement des maladies cardiovasculaires, est un trait multigénique complexe dont les connaissances sur le déterminisme génétique nécessitent d’être approfondies. De nombreux loci à trait quantitatif (QTLs); soit des gènes responsables de faire varier la pression artérielle (PA), ont été identifiés chez l’humain et le modèle animal. Cependant, le mystère plane encore sur la façon dont ces gènes fonctionnent ensemble pour réguler la PA. Hypothèse et objectif: Plutôt qu’une addition de QTLs ayant chacun une action infinitésimale sur la PA, une interaction épistatique entre les gènes serait responsable du phénotype hypertendu. Ainsi, l’étude de cette épistasie entre les gènes impliqués, directement ou indirectement, dans l’homéostasie de la PA nous permettrait d’explorer de nouvelles voies de régulation moléculaire en cause dans cette maladie. Méthodes: Via la réalisation de souches congéniques de rats, où un segment chromosomique provenant d’une souche receveuse hypertendue (Dahl Salt Sensitive, SS/Jr) est remplacé par son homologue provenant d’une souche donneuse normotendue (Lewis, LEW), des QTLs peuvent être mis en évidence. Dans ce contexte, la combinaison de QTLs via la création de doubles ou multiples congéniques constitue la première démonstration fonctionnelle des interactions intergéniques. Résultats: Vingt-sept combinaisons au total nous ont menés à l’appréciation d’une modularisation des QTLs. Ces derniers ont été catégorisés selon deux principaux modules épistatiques (EMs) où les QTLs appartenant à un même EM sont épistatiques entre eux et participent à une même voie régulatrice. Les EMs/cascades agissent alors en parallèle pour réguler la PA. Grâce à l’existence de QTLs ayant des effets opposés sur la PA, nous avons pu établir l’ordre hiérarchique entre trois paires de QTLs. Cependant, lorsque cette suite régulatrice ne peut être déterminée, d’autres approches sont nécessaires. Nos travaux nous ont mené à l’identification d’un QTL situé sur le chromosome 16 du rat (C16QTL), appartenant au EM1 et qui révélerait une nouvelle voie de l’homéostasie de la PA. Le gène retinoblastoma-associated protein 140 (Rap140)/family with sequence similarity 208 member A (Fam208a), présentant une mutation non synonyme entre SS/Jr et LEW est le gène candidat le plus plausible pour représenter C16QTL. Celui-ci code pour un facteur de transcription et semblerait influencer l’expression de Solute carrier family 7 (cationic amino acid transporter, y+ system) member 12 (Slc7a12), spécifiquement et significativement sous exprimé dans les reins de la souche congénique portant C16QTL par rapport à la souche SS/Jr. Rap140/Fam208a agirait comme un inhibiteur de la transcription de Slc7a12 menant à une diminution de la pression chez Lewis. Conclusions: L’architecture complexe de la régulation de la PA se dévoile mettant en scène de nouveaux acteurs, pour la plupart inconnus pour leur implication dans la PA. L’étude de la nouvelle voie de signalisation Rap140/Fam208a - Slc7a12 nous permettra d’approfondir nos connaissances quant à l’homéostasie de la pression artérielle et de l’hypertension chez SS/Jr. À long terme, de nouveaux traitements anti-hypertenseurs, ciblant plus d’une voie de régulation à la fois, pourraient voir le jour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but thatbokwas not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found thatbok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injuryin vitroand seizure-induced neuronal injuryin vivo Deletion ofbokalso increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death inbax-deficient neurons. Single-cell imaging demonstrated thatbok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bokdeficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death inbok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injuryin vitroandin vivo SIGNIFICANCE STATEMENT Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activitiesin vitroandin vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function. genesis 36:158-161, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa causes severe life-threatening airway infections that are a frequent cause for hospitalization of cystic fibrosis (CF) patients. These Gram-negative pathogens possess flagella that contain the protein flagellin as a major structural component. Flagellin binds to the host cell glycolipid asialoGM1 (ASGM1), which appears enriched in luminal membranes of respiratory epithelial cells. We demonstrate that in mouse airways, luminal exposure to flagellin leads to inhibition of Na+ absorption by the epithelial Na+ channel ENaC, but does not directly induce a secretory response. Inhibition of ENaC was observed in tracheas of wild-type mice and was attenuated in mice homozygous for the frequent cystic fibrosis conductance regulator (CFTR) mutation G551D. Similar to flagellin, anti-ASGM1 antibody also inhibited ENaC. The inhibitory effects of flagellin on ENaC were attenuated by blockers of the purinergic signaling pathway, although an increase in the intracellular Ca2+ concentration by recombinant or purified flagellin or whole flagella was not observed. Because an inhibitor of the mitogen-activated protein kinase (MAPK) pathway also attenuated the effects of flagellin on Na+ absorption, we conclude that flagellin exclusively inhibits ENaC, probably due to release of ATP and activation of purinergic receptors of the P2Y subtype. Stimulation of these receptors activates the MAPK pathway, thereby leading to inhibition of ENaC. Thus, P. aeruginosa reduces Na+ absorption, which could enhance local mucociliary clearance, a mechanism that seem to be attenuated in CF.