978 resultados para temporal sequence
Resumo:
We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.
Resumo:
The sequence and structure of snake gourd seed lectin (SGSL), a nontoxic homologue of type II ribosome-inactivating proteins (RIPs), have been determined by mass spectrometry and X-ray crystallography, respectively. As in type II RIPs, the molecule consists of a lectin chain made up of two beta-trefoil domains. The catalytic chain, which is connected through a disulfide bridge to the lectin chain in type II RIPs, is cleaved into two in SGSL. However, the integrity of the three-dimensional structure of the catalytic component of the molecule is preserved. This is the first time that a three-chain RIP or RIP homologue has been observed. A thorough examination of the sequence and structure of the protein and of its interactions with the bound methyl-alpha-galactose indicate that the nontoxicity of SGSL results from a combination of changes in the catalytic and the carbohydrate-binding sites. Detailed analyses of the sequences of type II RIPs of known structure and their homologues with unknown structure provide valuable insights into the evolution of this class of proteins. They also indicate some variability in carbohydrate-binding sites, which appears to contribute to the different levels of toxicity exhibited by lectins from various sources.
Resumo:
We address the problem of temporal envelope modeling for transient audio signals. We propose the Gamma distribution function (GDF) as a suitable candidate for modeling the envelope keeping in view some of its interesting properties such as asymmetry, causality, near-optimal time-bandwidth product, controllability of rise and decay, etc. The problem of finding the parameters of the GDF becomes a nonlinear regression problem. We overcome the hurdle by using a logarithmic envelope fit, which reduces the problem to one of linear regression. The logarithmic transformation also has the feature of dynamic range compression. Since temporal envelopes of audio signals are not uniformly distributed, in order to compute the amplitude, we investigate the importance of various loss functions for regression. Based on synthesized data experiments, wherein we have a ground truth, and real-world signals, we observe that the least-squares technique gives reasonably accurate amplitude estimates compared with other loss functions.
Resumo:
We propose a novel space-time descriptor for region-based tracking which is very concise and efficient. The regions represented by covariance matrices within a temporal fragment, are used to estimate this space-time descriptor which we call the Eigenprofiles(EP). EP so obtained is used in estimating the Covariance Matrix of features over spatio-temporal fragments. The Second Order Statistics of spatio-temporal fragments form our target model which can be adapted for variations across the video. The model being concise also allows the use of multiple spatially overlapping fragments to represent the target. We demonstrate good tracking results on very challenging datasets, shot under insufficient illumination conditions.
Resumo:
Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.
Resumo:
Protein functional annotation relies on the identification of accurate relationships, sequence divergence being a key factor. This is especially evident when distant protein relationships are demonstrated only with three-dimensional structures. To address this challenge, we describe a computational approach to purposefully bridge gaps between related protein families through directed design of protein-like ``linker'' sequences. For this, we represented SCOP domain families, integrated with sequence homologues, as multiple profiles and performed HMM-HMM alignments between related domain families. Where convincing alignments were achieved, we applied a roulette wheel-based method to design 3,611,010 protein-like sequences corresponding to 374 SCOP folds. To analyze their ability to link proteins in homology searches, we used 3024 queries to search two databases, one containing only natural sequences and another one additionally containing designed sequences. Our results showed that augmented database searches showed up to 30% improvement in fold coverage for over 74% of the folds, with 52 folds achieving all theoretically possible connections. Although sequences could not be designed between some families, the availability of designed sequences between other families within the fold established the sequence continuum to demonstrate 373 difficult relationships. Ultimately, as a practical and realistic extension, we demonstrate that such protein-like sequences can be ``plugged-into'' routine and generic sequence database searches to empower not only remote homology detection but also fold recognition. Our richly statistically supported findings show that complementary searches in both databases will increase the effectiveness of sequence-based searches in recognizing all homologues sharing a common fold. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth's terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specific, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.
Resumo:
Human La protein is known to be an essential host factor for translation and replication of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that residues responsible for interaction of human La protein with the HCV internal ribosomal entry site (IRES) around the initiator AUG within stem-loop IV form a beta-turn in the RNA recognition motif (RRM) structure. In this study, sequence alignment and mutagenesis suggest that the HCV RNA-interacting beta-turn is conserved only in humans and chimpanzees, the species primarily known to be infected by HCV. A 7-mer peptide corresponding to the HCV RNA-interacting region of human La inhibits HCV translation, whereas another peptide corresponding to the mouse La sequence was unable to do so. Furthermore, IRES-mediated translation was found to be significantly high in the presence of recombinant human La protein in vitro in rabbit reticulocyte lysate. We observed enhanced replication with HCV subgenomic and full-length replicons upon overexpression of either human La protein or a chimeric mouse La protein harboring a human La beta-turn sequence in mouse cells. Taken together, our results raise the possibility of creating an immunocompetent HCV mouse model using human-specific cell entry factors and a humanized form of La protein.
Resumo:
Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of alpha helices and beta sheets in these two solvents. For example, in 8 M urea solution, beta-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of alpha helices. In contrast, 8 M DMSO solution unfolds alpha helices first, followed by the separation of beta sheets for the majority of proteins. Sequence of unfolding events in four different alpha/beta proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.
Resumo:
Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.
Resumo:
D Regulatory information for transcription initiation is present in a stretch of genomic DNA, called the promoter region that is located upstream of the transcription start site (TSS) of the gene. The promoter region interacts with different transcription factors and RNA polymerase to initiate transcription and contains short stretches of transcription factor binding sites (TFBSs), as well as structurally unique elements. Recent experimental and computational analyses of promoter sequences show that they often have non-B-DNA structural motifs, as well as some conserved structural properties, such as stability, bendability, nucleosome positioning preference and curvature, across a class of organisms. Here, we briefly describe these structural features, the differences observed in various organisms and their possible role in regulation of gene expression.
Resumo:
This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.
Resumo:
A new representation of spatio-temporal random processes is proposed in this work. In practical applications, such processes are used to model velocity fields, temperature distributions, response of vibrating systems, to name a few. Finding an efficient representation for any random process leads to encapsulation of information which makes it more convenient for a practical implementations, for instance, in a computational mechanics problem. For a single-parameter process such as spatial or temporal process, the eigenvalue decomposition of the covariance matrix leads to the well-known Karhunen-Loeve (KL) decomposition. However, for multiparameter processes such as a spatio-temporal process, the covariance function itself can be defined in multiple ways. Here the process is assumed to be measured at a finite set of spatial locations and a finite number of time instants. Then the spatial covariance matrix at different time instants are considered to define the covariance of the process. This set of square, symmetric, positive semi-definite matrices is then represented as a third-order tensor. A suitable decomposition of this tensor can identify the dominant components of the process, and these components are then used to define a closed-form representation of the process. The procedure is analogous to the KL decomposition for a single-parameter process, however, the decompositions and interpretations vary significantly. The tensor decompositions are successfully applied on (i) a heat conduction problem, (ii) a vibration problem, and (iii) a covariance function taken from the literature that was fitted to model a measured wind velocity data. It is observed that the proposed representation provides an efficient approximation to some processes. Furthermore, a comparison with KL decomposition showed that the proposed method is computationally cheaper than the KL, both in terms of computer memory and execution time.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.