883 resultados para systemic sclerosis
Resumo:
Abstract Introduction Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients. Methods Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise). Results The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study. Conclusion A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients. Trial registration NCT01515163.
Resumo:
The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.
Resumo:
The Drug Reaction with Eosinophilia and Systemic Symptoms syndrome, also known as Drug Induced Hypersensitivity Syndrome presents clinically as an extensive mucocutaneous rash, accompanied by fever, lymphadenopathy, hepatitis, hematologic abnormalities with eosinophilia and atypical lymphocytes, and may involve other organs with eosinophilic infiltration, causing damage to several systems, especially to the kidneys, heart, lungs, and pancreas. Recognition of this syndrome is of paramount importance, since the mortality rate is about 10% to 20%, and a specific therapy may be necessary. The pathogenesis is related to specific drugs, especially the aromatic anticonvulsants, altered immune response, sequential reactivation of herpes virus and association with HLA alleles. Early recognition of the syndrome and withdrawal of the offending drug are the most important and essential steps in the treatment of affected patients. Corticosteroids are the basis of the treatment of the syndrome, which may be associated with intravenous immunoglobulin and, in selected cases, Ganciclovir. The article reviews the current concepts involving this important manifestation of adverse drug reaction.
Resumo:
Although human toxocariasis ranks among the most common zoonotic infections worldwide, it remains relatively unknown to the public. The causal agents are the nematode parasites Toxocara canis and T. cati, whose definitive hosts are dogs and cats, respectively. When embryonated eggs are accidentally ingested by humans, larvae hatch in the small intestine, penetrate the intestinal wall and migrate, via the bloodstream, to the liver, lungs, muscles, eye and central nervous system. Although most human infections are asymptomatic, two well-defined clinical syndromes are classically recognised: visceral larva migrans (a systemic disease caused by larval migration through major organs) and ocular larva migrans (a disease limited to the eyes and optic nerves). Two less-severe syndromes have recently been described, one mainly in children (covert toxocariasis) and the other mainly in adults (common toxocariasis). Here, the current laboratory diagnosis, epidemiology and main clinical features of both the systemic and ocular forms of human toxocariasis are reviewed. New developments in serological diagnosis are described, the available seroprevalence data are analysed, and the results of relevant clinical studies that have been published over the last decade are explored, to provide an updated overview of this neglected but highly prevalent human infection.
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
Introduction: Enterococcus faecalis is a member of the mammalian gastrointestinal microbiota but has been considered a leading cause of hospital-acquired infections. In the oral cavity, it is commonly detected from root canals of teeth with failed endodontic treatment. However, little is known about the virulence and genetic relatedness among E. faecalis isolates from different clinical sources. This study compared the presence of enterococcal virulence factors among root canal strains and clinical isolates from hospitalized patients to identify virulent clusters of E. faecalis. Methods: Multilocus sequence typing analysis was used to determine genetic lineages of 40 E. faecalis clinical isolates from different sources. Virulence clusters were determined by evaluating capsule (cps) locus polymorphisms, pathogenicity island gene content, and antibiotic resistance genes by polymerase chain reaction. Results: The clinical isolates from hospitalized patients formed a phylogenetically separate group and were mostly grouped in the clonal complex 2, which is a known virulent cluster of E. faecalis that has caused infection outbreaks globally. The clonal complex 2 group comprised capsule-producing strains harboring multiple antibiotic resistance and pathogenicity island genes. On the other hand, the endodontic isolates were more diverse and harbored few virulence and antibiotic resistance genes. In particular, although more closely related to isolates from hospitalized patients, capsuleproducing E. faecalis strains from root canals did not carry more virulence/antibiotic genes than other endodontic isolates. Conclusions: E. faecalis isolates from endodontic infections have a genetic and virulence profile different from pathogenic clusters of hospitalized patients’ isolates, which is most likely due to niche specialization conferred mainly by variable regions in the genome.
Resumo:
This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis.
Resumo:
Multiple sclerosis is the most common autoimmune inflammatory demyelinating disease of the central nervous system, and its etiology is believed to have both genetic and environmental components. Several viruses have already been implicated as triggers and there are several studies that implicate members of the Herpesviridae family in the pathogenesis of MS. The most important characteristic of these viruses is that they have periods of latency and exacerbations within their biological sanctuary, the central nervous system. The Epstein-Barr, cytomegalovirus, human herpesvirus 6 and human herpesvirus 7 viruses are the members that are most studied as being possible triggers of multiple sclerosis. According to evidence in the literature, the herpesvirus family is strongly involved in the pathogenesis of this disease, but it is unlikely that they are the only component responsible for its development. There are probably multiple triggers and more studies are necessary to investigate and define these interactions.
Resumo:
[EN] In this review we integrate ideas about regional and systemic circulatory capacities and the balance between skeletal muscle blood flow and cardiac output during heavy exercise in humans. In the first part of the review we discuss issues related to the pumping capacity of the heart and the vasodilator capacity of skeletal muscle. The issue is that skeletal muscle has a vast capacity to vasodilate during exercise [approximately 300 mL (100 g)(-1) min(-1)], but the pumping capacity of the human heart is limited to 20-25 L min(-1) in untrained subjects and approximately 35 L min(-1) in elite endurance athletes. This means that when more than 7-10 kg of muscle is active during heavy exercise, perfusion of the contracting muscles must be limited or mean arterial pressure will fall. In the second part of the review we emphasize that there is an interplay between sympathetic vasoconstriction and metabolic vasodilation that limits blood flow to contracting muscles to maintain mean arterial pressure. Vasoconstriction in larger vessels continues while constriction in smaller vessels is blunted permitting total muscle blood flow to be limited but distributed more optimally. This interplay between sympathetic constriction and metabolic dilation during heavy whole-body exercise is likely responsible for the very high levels of oxygen extraction seen in contracting skeletal muscle. It also explains why infusing vasodilators in the contracting muscles does not increase oxygen uptake in the muscle. Finally, when approximately 80% of cardiac output is directed towards contracting skeletal muscle modest vasoconstriction in the active muscles can evoke marked changes in arterial pressure.
Resumo:
[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.