978 resultados para synchronous-transit
Resumo:
Souza MA, Souza MH, Palheta RC Jr, Cruz PR, Medeiros BA, Rola FH, Magalhaes PJ, Troncon LE, Santos AA. Evaluation of gastrointestinal motility in awake rats: a learning exercise for undergraduate biomedical students. Adv Physiol Educ 33: 343-348, 2009; doi: 10.1152/advan.90176.2008.-Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols. Insulin and control rats were gavage fed with 5% glucose solution, whereas hypertonic-fed rats were gavage fed with 50% glucose solution. Insulin treatment was performed 30 min before a meal. All meals (1.5 ml) contained an equal mass of phenol red dye. After 10, 15, or 20 min of meal gavage, rats were euthanized. Each subset consisted of six to eight rats. Dye recovery in the stomach and proximal, middle, and distal small intestine was measured by spectrophotometry, a safe and reliable method that can be performed by minimally trained students. In a separate group of rats, we used the same protocols except that the test meal contained (99m)Tc as a marker. Compared with control, the hypertonic meal delayed gastric emptying and gastrointestinal transit, whereas insulinic hypoglycemia accelerated them. The session helped engage our undergraduate students in observing and analyzing gut motor behavior. In conclusion, the fractional dye retention test can be used as a teaching tool to strengthen the understanding of basic physiopathological features of gastrointestinal motility.
Resumo:
We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M(p) = 3.47 +/- 0.38 M(Jup), a radius R(p) = 1.31 +/- 0.18 R(Jup), and a density rho(p) = 2.2 +/- 0.8 g cm(-3). It orbits a G9V star with a mass M(*) = 0.95 +/- 0.15 M(circle dot), a radius R(*) = 1.00 +/- 0.13 R(circle dot), and a rotation period P(rot) = 5.4 +/- 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the RossiterMcLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity psi = 20 degrees +/- 20 degrees +/- (sky-projected value lambda = -10 degrees +/- 20 degrees), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.
Resumo:
Aims. We report the discovery of very shallow (Delta F/F approximate to 3.4 x 10(-4)), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 '' or triple systems are almost excluded with a 8 x 10(-4) risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 x 10(-5) day and a radius of R(p) = 1.68 +/- 0.09 R(Earth). Analysis of preliminary radial velocity data yields an upper limit of 21 M(Earth) for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, approximate to 1800-2600 K at the substellar point, and a very low one, approximate to 50 K, on its dark face assuming no atmosphere, have been derived.
Resumo:
We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler Swiss telescope have demonstrated that the observed radial velocity variations are dominated by rotational modulation from cool spots on the stellar surface. Several approaches were used to extract the radial velocity signal of the planet(s) from the stellar activity signal. First, a simple pre-whitening procedure was employed to find and subsequently remove periodic signals from the complex frequency structure of the radial velocity data. The dominant frequency in the power spectrum was found at 23 days, which corresponds to the rotation period of CoRoT-7. The 0.8535 day period of CoRoT-7b planetary candidate was detected with an amplitude of 3.3 m s(-1). Most other frequencies, some with amplitudes larger than the CoRoT-7b signal, are most likely associated with activity. A second approach used harmonic decomposition of the rotational period and up to the first three harmonics to filter out the activity signal from radial velocity variations caused by orbiting planets. After correcting the radial velocity data for activity, two periodic signals are detected: the CoRoT-7b transit period and a second one with a period of 3.69 days and an amplitude of 4 m s(-1). This second signal was also found in the pre-whitening analysis. We attribute the second signal to a second, more remote planet CoRoT-7c. The orbital solution of both planets is compatible with circular orbits. The mass of CoRoT-7b is 4.8 +/- 0.8 (M(circle plus)) and that of CoRoT-7c is 8.4 +/- 0.9 (M(circle plus)), assuming both planets are on coplanar orbits. We also investigated the false positive scenario of a blend by a faint stellar binary, and this may be rejected by the stability of the bisector on a nightly scale. According to their masses both planets belong to the super-Earth planet category. The average density of CoRoT-7b is rho = 5.6 +/- 1.3 g cm(-3), similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mix of water ice and rocks.
Resumo:
It is widely assumed that optimal timing of larval release is of major importance to offspring survival, but the extent to which environmental factors entrain synchronous reproductive rhythms in natural populations is not well known. We sampled the broods of ovigerous females of the common shore crab Pachygrapsus transversus at both sheltered and exposed rocky shores interspersed along a so-km coastline, during four different periods, to better assess inter-population differences of larval release timing and to test for the effect of wave action. Shore-specific patterns were consistent through time. Maximum release fell within 1 day around syzygies on all shores, which matched dates of maximum tidal amplitude. Within this very narrow range, populations at exposed shores anticipated hatching compared to those at sheltered areas, possibly due to mechanical stimulation by wave action. Average departures from syzygial release ranged consistently among shores from 2.4 to 3.3 days, but in this case we found no evidence for the effect of wave exposure. Therefore, processes varying at the scale of a few kilometres affect the precision of semilunar timing and may produce differences in the survival of recently hatched larvae. Understanding the underlying mechanisms causing departures from presumed optimal release timing is thus important for a more comprehensive evaluation of reproductive success of invertebrate populations.
Resumo:
The present work integrates sedimentary facies, (14)C dating, delta(13)C, delta(15)N, and C/N with geologic and geomorphologic data available from literature. The aim was to characterize the depositional settings of a late Quaternary estuary in northeastern Marajo Island and analyze its evolution within the context of relative sea level fluctuations. The data derive from four continuous cores along a proximal-to-distal transect of a paleoestuary, previously recognized using remote sensing information. Fifteen sediment samples recorded ages ranging from 42,580 +/- 1430 to 3184 +/- 37 (14)C yr B.P. Fades analysis indicated fine- to coarse-grained sands with parallel lamination or cross stratification, massive or laminated muds and heterolithic deposits. delta(13)C (-28.1 parts per thousand to -19.7 parts per thousand, mean = -23.0 parts per thousand), delta(15)N (+ 14.8 parts per thousand to + 4.7 parts per thousand, mean = + 9.2 parts per thousand) and C/N (14.5 to 1.5, mean = 7.9) indicate mostly marine and freshwater phytoplankton sources for the organic matter. The results confirm a large late Quaternary paleoestuary in northeastern Marajo Island. The distribution of delta(13)C, delta(15)N, and C/N, together with fades associations, led to identify depositional settings related to fluvial channel, floodplain, tidal channel/tidal flat, central basin, tidal delta, and tidal inlet/sand barrier. These deposits are consistent with a wave-dominated estuary. Variations in stratigraphy and geochemistry are controlled by changes in relative sea level, revealing a main transgression from an undetermined time around 42,000 (14)C yr B.P. and 29,340 (+/- 200) (14)C yr B.P., which is synchronous to the overall drop in sea level after the last interglacial. Following this period, and probably until 9110 +/- 37 (14)C yr B.P., i.e., during a time interval encompassing two glacial episodes including the Last Glacial and the Younger Dryas, there was a pronounced drop in sea level, recorded by the development of a major erosional discontinuity due to valley re-incision. Sea level rose again until 5464 +/- 40 (14)C yr B.P, just before the main worldwide mid-Holocene transgressive peak. Mid to late Holocene coastal progradation ended the Marajo paleoestuarine history, and promoted the establishment of continental conditions throughout the island. The divergence comparing the Marajo sea level behavior with the eustatic curve allows hypothesizing that post-rifting tectonics along the Brazilian Equatorial margin influenced the sedimentary evolution of the studied paleoestuary. Considering that sedimentary facies in estuarine settings are highly variable both laterally and vertically, the present integration of facies with isotope and elemental analyses was crucial to provide a more precise interpretation of the Late Pleistocene and Holocene Marajo paleoestuary, and analyze its sea level history within the eustatic and tectonic context. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a robust voltage control scheme for fixed-speed wind generators using a static synchronous compensator (STATCOM) controller. To enable a linear and robust control framework with structured uncertainty, the overall system is represented by a linear part plus a nonlinear part that covers an operating range of interest required to ensure stability during severe low voltages. The proposed methodology is flexible and readily applicable to larger wind farms of different configurations. The performance of the control strategy is demonstrated on a two area test system. Large disturbance simulations demonstrate that the proposed controller enhances voltage stability as well as transient stability of induction generators during low voltage ride through (LVRT) transients and thus enhances the LVRT capability. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper aims to find relations between the socioeconomic characteristics, activity participation, land use patterns and travel behavior of the residents in the Sao Paulo Metropolitan Area (SPMA) by using Exploratory Multivariate Data Analysis (EMDA) techniques. The variables influencing travel pattern choices are investigated using: (a) Cluster Analysis (CA), grouping and characterizing the Traffic Zones (17), proposing the independent variable called Origin Cluster and, (b) Decision Tree (DT) to find a priori unknown relations among socioeconomic characteristics, land use attributes of the origin TZ and destination choices. The analysis was based on the origin-destination home-interview survey carried out in SPMA in 1997. The DT application revealed the variables of greatest influence on the travel pattern choice. The most important independent variable considered by DT is car ownership, followed by the Use of Transportation ""credits"" for Transit tariff, and, finally, activity participation variables and Origin Cluster. With these results, it was possible to analyze the influence of a family income, car ownership, position of the individual in the family, use of transportation ""credits"" for transit tariff (mainly for travel mode sequence choice), activities participation (activity sequence choice) and Origin Cluster (destination/travel distance choice). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Line-start permanent magnet motor (LSPMM) is a very attractive alternative to replace induction motors due to its very high efficiency and constant speed operation with load variations. However, designing this kind of hybrid motor is hard work and requires a good understanding of motor behavior. The calculation of load angle is an important step in motor design and can not be neglected. This paper uses the finite element method to show a simple methodology to calculate the load angle of a three-phase LSPMM combining the dynamic and steady-state simulations. The methodology is used to analyze a three-phase LSPMM.
Resumo:
Steady-state and time-resolved fluorescence measurements are reported for several crude oils and their saturates, aromatics, resins, and asphaltenes (SARA) fractions (saturates, aromatics and resins), isolated from maltene after pentane precipitation of the asphaltenes. There is a clear relationship between the American Petroleum Institute (API) grade of the crude oils and their fluorescence emission intensity and maxima. Dilution of the crude oil samples with cyclohexane results in a significant increase of emission intensity and a blue shift, which is a clear indication of the presence of energy-transfer processes between the emissive chromophores present in the crude oil. Both the fluorescence spectra and the mean fluorescence lifetimes of the three SARA fractions and their mixtures indicate that the aromatics and resins are the major contributors to the emission of crude oils. Total synchronous fluorescence scan (TSFS) spectral maps are preferable to steady-state fluorescence spectra for discriminating between the fractions, making TSFS maps a particularly interesting choice for the development of fluorescence-based methods for the characterization and classification of crude oils. More detailed studies, using a much wider range of excitation and emission wavelengths, are necessary to determine the utility of time-resolved fluorescence (TRF) data for this purpose. Preliminary models constructed using TSFS spectra from 21 crude oil samples show a very good correlation (R(2) > 0.88) between the calculated and measured values of API and the SARA fraction concentrations. The use of models based on a fast fluorescence measurement may thus be an alternative to tedious and time-consuming chemical analysis in refineries.
Resumo:
The canonical representation of speech constitutes a perfect reconstruction (PR) analysis-synthesis system. Its parameters are the autoregressive (AR) model coefficients, the pitch period and the voiced and unvoiced components of the excitation represented as transform coefficients. Each set of parameters may be operated on independently. A time-frequency unvoiced excitation (TFUNEX) model is proposed that has high time resolution and selective frequency resolution. Improved time-frequency fit is obtained by using for antialiasing cancellation the clustering of pitch-synchronous transform tracks defined in the modulation transform domain. The TFUNEX model delivers high-quality speech while compressing the unvoiced excitation representation about 13 times over its raw transform coefficient representation for wideband speech.
Resumo:
One-way master-slave (OWMS) chain networks are widely used in clock distribution systems due to their reliability and low cost. As the network nodes are phase-locked loops (PLLs), double-frequency jitter (DFJ) caused by their phase detectors appears as an impairment to the performance of the clock recovering process found in communication systems and instrumentation applications. A nonlinear model for OWMS chain networks with P + 1 order PLLs as slave nodes is presented, considering the DFJ. Since higher order filters are more effective in filtering DFJ, the synchronous state stability conditions for an OWMS chain network with third-order nodes are derived, relating the loop gain and the filter coefficients. By using these conditions, design examples are discussed.
Resumo:
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results. (C) 2009 Elsevier B.V. All rights reserved.