956 resultados para structure-induced equilibrium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Brachial artery reactivity (BAR), carotid intima-media thickness (IMT), and applanation tonometry for evaluation of total arterial compliance may provide information about preclinical vascular disease. We sought to determine whether these tests could be used to identify patients with coronary artery disease (CAD) without being influenced by their ability to identify those at risk ford CAD developing. Methods: We studied 100 patients and compared 3 groups: 35 patients with known CAD; 34 patients with symptoms and risk factors but no CAD identified by stress echocardiography (risk group); and 31 control subjects. BAR and IMT were measured using standard methods, and total arterial compliance was calculated by the pulse-pressure method from simultaneous radial applanation tonometry and pulsed wave Doppler of the left ventricular outflow. Ischemia was identified as a new or worsening wall-motion abnormality induced by stress. Results: In a comparison between the control subjects and patients either at risk for developing CAD or with CAD, the predictors of risk for CAD were: age (P = .01); smoking history (P = .002); hypercholesterolemia (P = .002); and hypertension (P = .004) (model R = 0.82; P = .0001). The independent predictors of CAD were: IMT (P = .001); BAR (P = .04); sex (P = .005); and hypertension (P = .005) (model R = 0.80; P = .0001). Conclusion: IMT, BAR, and traditional cardiovascular risk factors appear to identify patients at risk for CAD developing. However, only IMT was significantly different between patients at risk for developing CAD and those with overt CAD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of short-term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green-striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3-9 months during aestivation. Short-duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross-sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Apoptosis and differentiation are among the consequences of changes in intracellular Ca2+ levels. In this study, we investigated the effects of the endoplasmic reticular Ca2+-ATPase inhibitor, thapsigargin (TG), on osteoclast apoptosis and differentiation. Materials and Methods: Both RAW264.7 cells and primary spleen cells were used to examine the effect of TG on RANKL-induced osteoclastogenesis. To determine the action of TG on signaling pathways, we used reporter gene assays for NF-kappa B and activator protein-1 (AP-1) activity, Western blotting for phosphoextracellular signal-related kinase (ERK), and fluorescent probes to measure changes in levels of intracellular calcium and reactive oxygen species (ROS). To assess rates of apoptosis, we measured changes in annexin staining, caspase-3 activity, and chromatin and F-actin microfilament structure. Results: At concentrations that caused a rapid rise in intracellular Ca2+, TG increased caspase-3 activity and promoted apoptosis in osteoclast-like cells (OLCs). Low concentrations of TG, which were insufficient to measurably alter intracellular Ca2+, unexpectedly suppressed caspase-3 activity and enhanced RANKL-induced osteoclastogenesis. At these lower concentrations, TG potentiated ROS production and RANKL-induced NF-kappa B activity, but suppressed RANKL-induced AP-1 activity and had little effect on ERK phosphorylation. Conclusion: Our novel findings of a biphasic effect of TG are incompletely explained by our current understanding of TG action, but raise the possibility that low intensity or local changes in subcellular Ca2+ levels may regulate intracellular differentiation signaling. The extent of cross-talk between Ca2+ and RANKL-mediated intracellular signaling pathways might be important in determining whether cells undergo apoptosis or differentiate into OLCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that a division of the f-shell into two subsystems gives a better understanding of the cohesive properties as well the general behavior of lanthanide systems. In this article, we present numerical computations, using the suggested method. We show that the picture is consistent with most experimental data, e.g., the equilibrium volume and electronic structure in general. Compared with standard energy band calculations and calculations based on the self-interaction correction and LIDA + U, the f-(non-f)-mixing interaction is decreased by spectral weights of the many-body states of the f-ion. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the X-ray crystal structure and powder EPR spectrum of [(HC(Ph2PO)(3))(2)CU]-(ClO4)(2)center dot 2H(2)O is reported, and the structure at room temperature confirms that reported previously. Below similar to 100 K, the data imply a geometry with near elongated tetragonal symmetry for the [(HC(Ph2PO)(3))(2)Cu](2+) complex, but on warming the two higher Cu-O bond lengths and g-values progressively converge, and by 340 K the bond lengths correspond to a compressed tetragonal geometry. The data may be interpreted satisfactorily assuming an equilibrium among the energy levels of a Cu-O-6 polyhedron subjected to Jahn-Teller vibronic coupling and a lattice strain. However, agreement with the experiment is obtained only if the orthorhombic component of the lattice strain decreases to a negligible value as the temperature approaches 340 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of the Woodleigh impact structure, first identified by R. P. lasky, bears a number of parallels with that of the Chlcxulub impact structure of K-T boundary age, underpinning complications inherent in the study of buried impact structures by geophysical techniques and drilling. Questions raised in connection with the diameter of the Woodleigh impact structure reflect uncertainties in criteria used to define original crater sizes in eroded and buried impact structures as well as limits on the geological controls at Woodleigh. The truncation of the regional Ajona - Wandagee gravity ridges by the outer aureole of the Woodleigh structure, a superposed arcuate magnetic anomaly along the eastern part of the structure, seismic-reflection data indicating a central > 37 km-diameter dome, correlation of fault patterns between Woodleigh and less-deeply eroded impact structures (Ries crater, Chesapeake Bay), and morphometric estimates all indicate a final diameter of 120 km. At Woodleigh, pre-hydrothermal shock-induced melting and diaplectic transformations are heavily masked by pervasive alteration of the shocked gneisses to montmorillonite-dominated clays, accounting for the high MgO and low K2O of cryptocrystalline components. The possible contamination of sub-crater levels of the Woodlelgh impact structure by meteoritic components, suggested by high Ni, Co, Cr, Ni/ Co and Ni/Cr ratios, requires further siderophile element analyses of vein materials. Although stratigraphic age constraints on the impact event are broad (post-Middle Devonian to pre-Early Jurassic) high-temperature (200-250 degrees C) pervasive hydrothermal activity dated by K-Ar isotopes of illite - smectite indicates an age of 359 +/- 4 Ma. To date neither Late Devonian crater fill, nor impact ejecta fallout units have been identified, although metallic meteoritic ablation spherules of a similar age have been found in the Conning Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermally altered shock-metamorphosed gneisses consisting of relic igneous biotite-K-feldspor-Na-rich alkali feldspar - plagioclase - quartz assemblages ( accessory garnet, corundum, titanite, monazite, zircon), and showing extensive replacement by montmorillonite, illite, sericite, and to a lesser extent chlorite, calcite, epidote, zoisite and pyrite, occur in the basement core uplift of the Woodleigh impact structure, Western Australia. The rocks display extensive hydrothermal clay alteration, complicating identification of pre-hydrothermal and pre-impact textures and compositions. Analysis of quartz-hosted planar deformation features (PDFs) indicates a majority of indexed sets parallel to omega{10 (1) over bar3}, a lesser abundance of sets parallel to pi{10 (1) over bar2}, and some sets parallel to the basal plane (0001) and r,z {10 (1) over bar1}, consistent with pressures about or over 20 GPa. Feldspar-hosted FDFs form reticulate vein networks displaying checkerboard-like to irregular and serrated patterns attributable to preferential replacement of shock-damaged PDFs and/or perthitic twin lamella by clay minerals. The gneisses are pervaded by clay-dominated intergranular and intragranular veins of cryptocrystalline material that display marked departures from bulk-rock chemistry and from mineral compositions. XRD analysis identifies the cryptocrystalline components as illite - montmorillonite, illite and chlorite, while laser Raman analysis identifies high-fluorescence sub-micrometre clay assemblage, feldspar, quartz and minor mica. SEM/EDS-probe and laser-ICPMS analysis indicate low-K high-Mg clay mineral compositions consistent with montmorillonite. Quartz PDF-hosted cryptocrystalline laminae display distinct enrichments in Al, Mg, Ca and K. Altered intergranular veins and feldspar-hosted cryptocrystalline components show consistent enrichment in the relatively refractory elements (Al, Cc, Mg, Fe) and depletion in relatively volatile elements (Si, K, Na). The clay alteration retards determination whether clay-dominated vein networks represent altered shock-induced pseudotachylite veins, diaplectic zones and/or shock-damaged twin lamella, and/or result from purely mineralogical and chemical differentiation affected by hydrothermal fluids, Overall enrichment of the shocked gneiss and of the cryptocrystalline components in Mg and trace ferromagnesian elements (Ni, Cc, Cr) may be attributed alternatively to introduction of siderophile element-rich fluid from the projectile, or/and contamination of hydrothermal fluids by MgO from dolomites surrounding the basement uplift. High Ni/Co and Ni/Cr and anomalous DGE (platinum group elements) may support the former model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify the effect of reactive preparation on the structure and properties of rigid polyurethane (PU)layered silicate nanocomposite, a range of nanocomposites were prepared by combining the various precursors in different sequences. The morphology of the samples was characterized by XRD and TEM. Tensile properties and dynamic mechanical thermal properties were measured. The reactions between the layered silicates and PU precursors were monitored via FTIR to gain an understanding of the participation of nanofiller in the polymerization reaction, and the impact of this on system stoichiometry. The XRD and TEM results provided evidence that morphology can differ significantly if different synthesis methods are used. However, the mechanical properties are dominated by the stoichiometry imbalance induced by the addition of the layered silicates. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study gives a contribution to the knowledge on the Na-feldspar and plagioclases, extending the database of the Raman spectra of plagioclases with different chemical compositions and structural orders. This information may be used for the future planetary explorations by “rovers”, for the investigation of ceramics nanocrystal materials and for the mineralogical phase identification in sediments. Na-feldspar and plagioclase solid solution have been investigated by Raman spectroscopy in order to determine the relationships between the vibrational changes and the plagioclase crystal chemistry and structure. We focused on the Raman micro-spectroscopy technique, being a non-destructive method, suited for contactless analysis with high spatial resolution. Chemical and structural analyses have been performed on natural samples to test the usefulness of Raman spectroscopy as a tool in the study of the pressure-induced structural deformations, the disordering processes due to change in the Al-Si distribution in the tetrahedral sites and, finally, in the determination of the anorthitic content (Anx) in plagioclase minerals. All the predicted 39 Ag Raman active modes have been identified and assigned to specific patterns of atomic vibrational motion. A detailed comparison between experimental and computed Raman spectra has been performed and previous assignments have been revised, solving some discrepancies reported in recent literature. The ab initio calculation at the hybrid HF/DFT level with the WC1LYP Hamiltonian has proven to give excellent agreement between calculated and experimentally measured Raman wavenumbers and intensities in triclinic minerals. A short digression on the 36 infrared active modes of Na-feldspar has been done too. The identification of all 39 computed Raman modes in the experimentally measured spectra of the fully ordered Na-feldspar, known as low albite, along with the detailed description of each vibrational mode, has been essential to extend the comparative analysis to the high pressure and high temperature structural forms of albite, which reflect the physical–chemical conditions of the hosting rocks. The understanding of feldspar structure response to pressure and temperature is crucial in order to constrain crustal behaviour. The compressional behaviour of the Na-feldspar has been investigated for the first time by Raman spectroscopy. The absence of phase transitions and the occurrence of two secondary compression mechanisms acting at different pressures have been confirmed. Moreover, Raman data suggest that the internal structural changes are confined to a small pressure interval, localized around 6 GPa, not spread out from 4 to 8 GPa as suggested by previous X-rays studies on elasticity. The dominant compression mechanisms act via tetrahedral tilting, while the T-O bond lengths remain nearly constant at moderate compressional regimes. At the spectroscopic level, this leads to the strong pressure dependencies of T-O-T bending modes, as found for the four modes at 478, 508, 578 and 815 cm-1. The Al-Si distribution in the tetrahedral sites affects also the Raman spectrum of Na-feldspar. In particular, peak broadening is more sensitive than peak position to changes in the degree of order. Raman spectroscopy is found to be a good probe for local ordering, in particular being sensitive to the first annealing steps, when the macroscopic order parameter is still high. Even though Raman data are scattered and there are outliers in the estimated values of the degree of order, the average peak linewidths of the Na-feldspar characteristic doublet band, labelled here as υa and υb, as a function of the order parameter Qod show interesting trends: both peak linewidths linearly increase until saturation. From Qod values lower than 0.6, peak broadening is no more affected by the Al-Si distribution. Moreover, the disordering process is found to be heterogeneous. SC-XRD and Raman data have suggested an inter-crystalline inhomogeneity of the samples, i.e., the presence of regions with different defect density on the micrometric scale. Finally, the influence of Ca-Na substitution in the plagioclase Raman spectra has been investigated. Raman spectra have been collected on a series of well characterized natural, low structural plagioclases. The variations of the Raman modes as a function of the chemical composition and the structural order have been determined. The number of the observed Raman bands at each composition gives information about the unit-cell symmetry: moving away from the C1 structures, the number of the Raman bands enhances, as the number of formula units in the unit cell increases. The modification from an “albite-like” Raman spectrum to a more “anorthite-like” spectrum occurs from sample An78 onwards, which coincides with the appearance of c reflections in the diffraction patterns of the samples. The evolution of the Raman bands υa and υb displays two changes in slope at ~An45 and ~An75: the first one occurs between e2 and e1 plagioclases, the latter separates e1 and I1 plagioclases with only b reflections in their diffraction patterns from I1 and P1 samples having b and c reflections too. The first variation represents exactly the e2→e1 phase transitions, whereas the second one corresponds in good approximation to the C1→I1 transition, which has been determined at ~An70 by previous works. The I1→P1 phase transition in the anorthite-rich side of the solid solution is not highlighted in the collected Raman spectra. Variations in peak broadening provide insights into the behaviour of the order parameter on a local scale, suggesting an increase in the structural disorder within the solid solution, as the structures have to incorporate more Al atoms to balance the change from monovalent to divalent cations. All the information acquired on these natural plagioclases has been used to produce a protocol able to give a preliminary estimation of the chemical composition of an unknown plagioclase from its Raman spectrum. Two calibration curves, one for albite-rich plagioclases and the other one for the anorthite-rich plagioclases, have been proposed by relating the peak linewidth of the most intense Raman band υa and the An content. It has been pointed out that the dependence of the composition from the linewidth can be obtained only for low structural plagioclases with a degree of order not far away from the references. The proposed tool has been tested on three mineralogical samples, two of meteoric origin and one of volcanic origin. Chemical compositions by Raman spectroscopy compare well, within an error of about 10%, with those obtained by elemental techniques. Further analyses on plagioclases with unknown composition will be necessary to validate the suggested method and introduce it as routine tool for the determination of the chemical composition from Raman data in planetary missions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies reactive with native double stranded DNA are characteristic of the chronic inflammatory disease systemic lupus erythematosus. Native DNA is however, a poor immunogen and the mechanism of anti-DNA antibody production is incompletely understood. Modification of DNA can increase its immunogenicity and in inflammatory disease states reactive oxygen species produced from phagocytic cells have been shown to thus modify DNA. In this study, monoclonal antibodies produced spontaneously by two mice strains with lupus-like disease were used in a competition ELISA to monitor changes to DNA induced by reactive oxygen species. Different procedures for reactive oxygen species generation were found to cause distinct and characteristic changes to DNA involving modifications of base residues, the sugar-phosphate backbone and the gross conformational structure of double-stranded DNA. In view of this, it may be possible to use these antibodies further to probe DNA and infer the source and nature of the reactive oxygen species it has been exposed to, particularly in vivo.