975 resultados para strong coupling expansions
Resumo:
The ability to perform strong updates is the main contributor to the precision of flow-sensitive pointer analysis algorithms. Traditional flow-sensitive pointer analyses cannot strongly update pointers residing in the heap. This is a severe restriction for Java programs. In this paper, we propose a new flow-sensitive pointer analysis algorithm for Java that can perform strong updates on heap-based pointers effectively. Instead of points-to graphs, we represent our points-to information as maps from access paths to sets of abstract objects. We have implemented our analysis and run it on several large Java benchmarks. The results show considerable improvement in precision over the points-to graph based flow-insensitive and flow-sensitive analyses, with reasonable running time.
Resumo:
We study quasiparticle tunneling in Josephson tunnel junctions embedded in an electromagnetic environment. We identify tunneling processes that transfer electrical charge and couple to the environment in a way similar to that of normal electrons, and processes that mix electrons and holes and are thus creating charge superpositions. The latter are sensitive to the phase difference between the superconductors and are thus limited by phase diffusion even at zero temperature. We show that the environmental coupling is suppressed in many environments, thus leading to lower quasiparticle decay rates and better superconductor qubit coherence than previously expected. Our approach is nonperturbative in the environmental coupling strength.
Resumo:
The regioselective formation of highly branched dienes is a challenging task. Design and exploration of alternative working models to achieve such a regioselectivity to accomplish highly branched dienes is considered to be a historical advancement of Heck reaction to construct branched dienes. On the basis of the utility of carbene transfer reactions, in the reaction of hydrazones with Pd(II) under oxidative conditions, we envisioned obtaining a Pd-bis-carbene complex with alpha-hydrogens, which can lead to branched dienes. Herein, we report a novel Pd-catalyzed selective coupling reaction of hydrazones in the presence of t-BuOLi and benzoquinone to form the corresponding branched dienes. The utility of the Pd catalyst for the cross-coupling reactions for synthesizing branched conjugated dienes is rare. The reaction is very versatile and compatible with a variety of functional groups and is useful in synthesizing heterocyclic molecules. We anticipate that this Pd-catalyzed cross-coupling reaction will open new avenues for synthesizing useful compounds.
Resumo:
Phosphorylation of amines, alcohols, and sulfoximines are accomplished using molecular iodine as a catalyst and H2O2 as the sole oxidant under mild reaction conditions. This method provides an easy route for synthesizing a variety of phosphoramidates, phosphorus triesters and sulfoximine-derived phosphoramidates which are of biological importance.
Resumo:
A series expansion for Heckman-Opdam hypergeometric functions phi(lambda) is obtained for all lambda is an element of alpha(C)*. As a consequence, estimates for phi(lambda) away from the walls of a Weyl chamber are established. We also characterize the bounded hypergeometric functions and thus prove an analogue of the celebrated theorem of Helgason and Johnson on the bounded spherical functions on a Riemannian symmetric space of the noncompact type. The L-P-theory for the hypergeometric Fourier transform is developed for 0 < p < 2. In particular, an inversion formula is proved when 1 <= p < 2. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We report a detailed magnetic, dielectric and Raman studies on partially disordered and biphasic double perovskite La2NiMnO6. DC and AC magnetic susceptibility measurements show two magnetic anomalies at T-C1 similar to 270 K and T-C2 similar to 240 K, which may indicate the ferromagnetic ordering of the monoclinic and rhombohedral phases, respectively. A broad peak at a lower temperature (T-sg similar to 70 K) is also observed indicating a spin-glass transition due to partial anti-site disorder of Ni2+ and Mn4+ ions. Unlike the pure monoclinic phase, the biphasic compound exhibits a broad but a clear dielectric anomaly around 270 K which is a signature of magneto-dielectric effect. Temperature-dependent Raman studies between the temperature range 12-300 K in a wide spectral range from 220 cm(-1) to 1530 cm(-1) reveal a strong renormalization of the first as well as second-order Raman modes associated with the (Ni/Mn)O-6 octahedra near T-C1 implying a strong spin-phonon coupling. In addition, an anomaly is seen in the vicinity of spin-glass transition temperature in the temperature dependence of the frequency of the anti-symmetric stretching vibration of the octahedra. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pyridoxal kinase (PdxK; EC 2.7.1.35) belongs to the phosphotransferase family of enzymes and catalyzes the conversion of the three active forms of vitamin B-6, pyridoxine, pyridoxal and pyridoxamine, to their phosphorylated forms and thereby plays a key role in pyridoxal 5 `-phosphate salvage. In the present study, pyridoxal kinase from Salmonella typhimurium was cloned and overexpressed in Escherichia coli, purified using Ni-NTA affinity chromatography and crystallized. X-ray diffraction data were collected to 2.6 angstrom resolution at 100 K. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unitcell parameters a = 65.11, b = 72.89, c = 107.52 angstrom. The data quality obtained by routine processing was poor owing to the presence of strong diffraction rings caused by a polycrystalline material of an unknown small molecule in all oscillation images. Excluding the reflections close to powder/polycrystalline rings provided data of sufficient quality for structure determination. A preliminary structure solution has been obtained by molecular replacement with the Phaser program in the CCP4 suite using E. coli pyridoxal kinase (PDB entry 2ddm) as the phasing model. Further refinement and analysis of the structure are likely to provide valuable insights into catalysis by pyridoxal kinases.
Resumo:
BiEuO3 (BE) and BiGdO3 (BG) are synthesized by the solid-state reaction technique. Rietveld refinement of the X-ray diffraction data shows that the samples are crystallized in cubic phase at room temperature having Fm3m symmetry with the lattice parameters of 5.4925(2) and 5.4712(2) A for BE and BG, respectively. Raman spectra of the samples are investigated to obtain the phonon modes of the samples. The dielectric properties of the samples are investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. An analysis of the real and imaginary parts of impedance is performed assuming a distribution of relaxation times as confirmed by the Cole-Cole plots. The frequency-dependent maxima in the loss tangent are found to obey an Arrhenius law with activation energy similar to 1 eV for both the samples. The frequency-dependent electrical data are also analyzed in the framework of conductivity formalism. Magnetization of the samples are measured under the field cooled (EC) and zero field cooled (ZFC) modes in the temperature range from 5 K to 300 K applying a magnetic Field of 500 Oe. The FC and ZFC susceptibilities show that BE is a Van Vleck paramagnetic material with antiferromagnetic coupling at low temperature whereas BG is an anti-ferromagnetic system. The results are substantiated by the M-11 loops of the materials taken at 5 K in the ZFC mode. (C) 2014 Elsevier B.V. All rights reserved
Resumo:
The parent compound of iron chalcogenide superconductors, Fe1+yTe, with a range of excess Fe concentrations exhibits intriguing structural and magnetic properties. Here, the interplay of magnetic and structural properties of Fe1.12Te single crystals have been probed by low-temperature synchrotron X-ray powder diffraction, magnetization, and specific heat measurements. Thermodynamic measurements reveal two distinct phase transitions, considered unique to samples possessing excess Fe content in the range of 0.11 <= y <= 0.13. On cooling, an antiferromagnetic transition, T-N approximate to 57K is observed. A closer examination of powder diffraction data suggests that the transition at TN is not purely magnetic, but accompanied by the commencement of a structural phase transition from tetragonal to orthorhombic symmetry. This is followed by a second prominent first-order structural transition at T-S with T-S < T-N, where an onset of monoclinic distortion is observed. The results point to a strong magneto-structural coupling in this material. (C) 2014 AIP Publishing LLC.
Resumo:
Several time dependent fluorescence Stokes shift (TDFSS) experiments have reported a slow power law decay in the hydration dynamics of a DNA molecule. Such a power law has neither been observed in computer simulations nor in some other TDFSS experiments. Here we observe that a slow decay may originate from collective ion contribution because in experiments DNA is immersed in a buffer solution, and also from groove bound water and lastly from DNA dynamics itself. In this work we first express the solvation time correlation function in terms of dynamic structure factors of the solution. We use mode coupling theory to calculate analytically the time dependence of collective ionic contribution. A power law decay in seen to originate from an interplay between long-range probe-ion direct correlation function and ion-ion dynamic structure factor. Although the power law decay is reminiscent of Debye-Falkenhagen effect, yet solvation dynamics is dominated by ion atmosphere relaxation times at longer length scales (small wave number) than in electrolyte friction. We further discuss why this power law may not originate from water motions which have been computed by molecular dynamics simulations. Finally, we propose several experiments to check the prediction of the present theoretical work.
Resumo:
Recent advances in nanotechnology have paved ways to various techniques for designing and fabricating novel nanostructures incorporating noble metal nanoparticles, for a wide range of applications. The interaction of light with metal nanoparticles (NPs) can generate strongly localized electromagnetic fields (Localized Surface Plasmon Resonance, LSPR) at certain wavelengths of the incident beam. In assemblies or structures where the nanoparticles are placed in close proximity, the plasmons of individual metallic NPs can be strongly coupled to each other via Coulomb interactions. By arranging the metallic NPs in a chiral (e.g. helical) geometry, it is possible to induce collective excitations, which lead to differential optical response of the structures to right-and left circularly polarized light (e.g. Circular Dichroism - CD). Earlier reports in this field include novel techniques of synthesizing metallic nanoparticles on biological helical templates made from DNA, proteins etc. In the present work, we have developed new ways of fabricating chiral complexes made of metallic NPs, which demonstrate a very strong chiro-optical response in the visible region of the electromagnetic spectrum. Using DDA (Discrete Dipole Approximation) simulations, we theoretically studied the conditions responsible for large and broadband chiro-optical response. This system may be used for various applications, for example those related to polarization control of visible light, sensing of proteins and other chiral bio-molecules, and many more.
Resumo:
Coupled wavenumbers in infinite fluid-filled isotropic and orthotropic cylindrical shells are considered. Using the Donnell-Mushtari (DM) theory for thin shells, compact and elegant asymptotic expansions for the wavenumbers are found at an intermediate fluid loading for both the coupled rigid-duct modes (''fluid-originated'') and the coupled structural wavenumbers (''structure-originated modes'') over the entire frequency range where DM theory is valid. The coupled rigid-duct expansions are found to be valid for O(1) orthotropy and for all circumferential orders, whereas the coupled structural wavenumber expansions are valid for small orthotropy and for low circumferential orders. These two above results are then used to derive the expansions for a set of multiple complex roots that display a locking behavior at this intermediate fluid-loading. The expansions are matched with the numerical solutions of the coupled dispersion relation and the match is found to be good over most of the frequency range. (C) 2014 Acoustical Society of America.
Resumo:
Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.
Resumo:
The magneto-dielectric coupling in (l00) oriented LaMn0.5Co0.5O3 single crystals has been investigated using temperature, frequency, and magnetic field dependent dielectric response. Electronic transport data divulges that polaronic hopping arises due to Emin-Holstein adiabatic small polarons. Spin realignment through external magnetic field favors faster polaronic hopping by lowering activation energy for dielectric relaxation. Finally, positive magneto-dielectricity and magnetoloss under increasing magnetic field at high frequency of the exciting ac field confirms intrinsic magneto-dielectric effect in disordered ferromagnetic-insulator LaMn0.5Co0.5O3. This study also emphasizes the need to use single crystals as well as the frequencies higher than the corresponding inverse relaxation time. (C) 2014 AIP Publishing LLC.
Resumo:
We consider the issue of the top quark Yukawa coupling measurement in a model-independent and general case with the inclusion of CP violation in the coupling. Arguably the best process to study this coupling is the associated production of the Higgs boson along with a t (t) over bar pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement-assuming a Standard Model (SM)-like coupling is available in the context of the ILC-conclude that the coupling could be pinned down to about a 10% level with modest luminosity, our investigations show that the scenario could be different in the case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the coupling, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies of the ILC with center-of-mass energies of 500 GeV, 800 GeV, and 1000 GeV show that moderate CP mixing in the Higgs sector could change the sensitivity to about 20%, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. Detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of the SM, such as for a model-independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be exercised in the measurement of the Yukawa couplings and the conclusions drawn from it.