901 resultados para stochastic simulation method
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB
Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as Ginzburg-Landau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are presented for different GLL equations, with emphasis on equations incorporating memory effects.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A partir de perfis populacionais experimentais de linhagens do díptero forídeo Megaselia scalaris, foi determinado o número mínimo de perfis amostrais que devem ser repetidos, via processo de simulação bootstrap, para se ter uma estimativa confiável do perfil médio populacional e apresentar estimativas do erro-padrão como medida da precisão das simulações realizadas. Os dados originais são provenientes de populações experimentais fundadas com as linhagens SR e R4, com três réplicas cada, e que foram mantidas por 33 semanas pela técnica da transferência seriada em câmara de temperatura constante (25 ± 1,0ºC). A variável usada foi tamanho populacional e o modelo adotado para cada perfíl foi o de um processo estocástico estacionário. Por meio das simulações, os perfis de três populações experimentais foram amplificados, determinando-se, dessa forma, o tamanho mínimo de amostra. Fixado o tamanho de amostra, simulações bootstrap foram realizadas para construção de intervalos de confiança e comparação dos perfis médios populacionais das duas linhagens. Os resultados mostram que com o tamanho de amostra igual a 50 inicia-se o processo de estabilização dos valores médios.
Resumo:
A finite element analysis was carried out to study the role of prefabricated threaded split shaft post (Flexi-Post) on dentinal stress in pulpless tooth. Three dimensional plane strain model of mesio-distal section of a human maxillary central incisor without restoration was analysed with the MSC/NASTRAN (MacNeal/ Schwendler) general purpose finite analysis program was executed on a microcomputer. The model as discretized into 48.954 axisymmetric finite elements defined by 10.355 nodes. Each element was assigned unique elastic properties to represent the materials modeled. Homogeneity, isotropy and linear elasticity were assume for all material. A simulation of static load of 100N was applied to the incisal edge of the post; vertical. Maximal principal stresses and von Mises equivalent stress were calculated. Using the element analysis model employed in this study, the following can be concluded concerning threaded split shaft post (Flexi-Post): Maximum principal stresses in dentin were located at cervical place and at the post apex. The apical threads of the post not redirecting stresses away from the root.
Resumo:
The conventional power flow method is considered to be inadequate to obtain the maximum loading point because of the singularity of Jacobian matrix. Continuation methods are efficient tools for solving this kind of problem since different parameterization schemes can be used to avoid such ill-conditioning problems. This paper presents the details of new schemes for the parameterization step of the continuation power flow method. The new parameterization options are based on physical parameters, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and transmission line power losses (real and reactive). The simulation results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are not only preserved but also improved.
Resumo:
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.
Resumo:
A parallel technique, for a distributed memory machine, based on domain decomposition for solving the Navier-Stokes equations in cartesian and cylindrical coordinates in two dimensions with free surfaces is described. It is based on the code by Tome and McKee (J. Comp. Phys. 110 (1994) 171-186) and Tome (Ph.D. Thesis, University of Strathclyde, Glasgow, 1993) which in turn is based on the SMAC method by Amsden and Harlow (Report LA-4370, Los Alamos Scientific Laboratory, 1971), which solves the Navier-Stokes equations in three steps: the momentum and Poisson equations and particle movement, These equations are discretized by explicit and 5-point finite differences. The parallelization is performed by splitting the computation domain into vertical panels and assigning each of these panels to a processor. All the computation can then be performed using nearest neighbour communication. Test runs comparing the performance of the parallel with the serial code, and a discussion of the load balancing question are presented. PVM is used for communication between processes. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
Polyampholyte copolymers containing both positive and negative monomers regularly dispersed along the chain were studied. The Monte Carlo method was used to simulate chains with charged monomers interacting by screened Coulomb potential. The neutral polyampholyte chains collapse due to the attractive electrostatic interactions. The nonneutral chains are in extended conformations due to the repulsive polyelectrolyte effects that dominate the attractive polyampholyte interactions. The results are in good agreement with experiment.
Resumo:
A simulation study was made of the effects of mixing two evolutionary forces (natural selection and random genetic drift), combined in a single data matrix of gene frequencies, on the resulting genetic distances among populations. Twenty-one, kinds of simulated gene frequencies surfaces, for 15 populations linearly distributed over geographic space, were used to construct 21 data matrices, combining different proportions of two types of surfaces (gradients and random surfaces). These matrices were analysed by Unweighted Pair-Group Method - Arithmetic Averages (UPGMA), clustering and Principal Coordinate Analysis. The results obtained show that ordination is more accurate than UPGMA in revealing the spatial patterns in the genetic distances, in comparison with results obtained using the Mantel test comparing directly genetic and geographic distances.