945 resultados para spatial patterns


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Advisa MRI system is designed to safely undergo magnetic resonance imaging (MRI). Its influence on image quality is not well known. OBJECTIVE: To evaluate cardiac magnetic resonance (CMR) image quality and to characterize myocardial contraction patterns by using the Advisa MRI system. METHODS: In this international trial with 35 participating centers, an Advisa MRI system was implanted in 263 patients. Of those, 177 were randomized to the MRI group and 150 underwent MRI scans at the 9-12-week visit. Left ventricular (LV) and right ventricular (RV) cine long-axis steady-state free precession MR images were graded for quality. Signal loss along the implantable pulse generator and leads was measured. The tagging CMR data quality was assessed as the percentage of trackable tagging points on complementary spatial modulation of magnetization acquisitions (n=16) and segmental circumferential fiber shortening was quantified. RESULTS: Of all cine long-axis steady-state free precession acquisitions, 95% of LV and 98% of RV acquisitions were of diagnostic quality, with 84% and 93%, respectively, being of good or excellent quality. Tagging points were trackable from systole into early diastole (360-648 ms after the R-wave) in all segments. During RV pacing, tagging demonstrated a dyssynchronous contraction pattern, which was not observed in nonpaced (n = 4) and right atrial-paced (n = 8) patients. CONCLUSIONS: In the Advisa MRI study, high-quality CMR images for the assessment of cardiac anatomy and function were obtained in most patients with an implantable pacing system. In addition, this study demonstrated the feasibility of acquiring tagging data to study the LV function during pacing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international allocation of natural resources is determined, not by any ethical or ecological criteria, but by the dominance of market mechanisms. From a core-periphery perspective, this allocation may even be driven by historically determined structural patterns, with a core group of countries whose consumption appropriates most available natural resources, and another group, having low natural resource consumption, which plays a peripheral role. This article consists of an empirical distributional analysis of natural resource consumption (as measured by Ecological Footprints) whose purpose is to assess the extent to which the distribution of consumption responds to polarization (as opposed to mere inequality). To assess this, we estimate and decompose different polarization indices for a balanced sample of 119 countries over the period 1961 to 2007. Our results points toward a polarized distribution which is consistent with a core-periphery framework. Keywords: Polarization, Core-Periphery, Ecological Footprint

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co-occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse-hunter spiders of the genus Dysdera have undergone a major diversi cation on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co-occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non-genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using ve calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation-like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study con rms that co-distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics con rm the key role of lava ows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co-occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse-hunter spiders of the genus Dysdera have undergone a major diversi cation on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co-occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non-genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using ve calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation-like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study con rms that co-distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics con rm the key role of lava ows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biotic interactions are known to affect the composition of species assemblages via several mechanisms, such as competition and facilitation. However, most spatial models of species richness do not explicitly consider inter-specific interactions. Here, we test whether incorporating biotic interactions into high-resolution models alters predictions of species richness as hypothesised. We included key biotic variables (cover of three dominant arctic-alpine plant species) into two methodologically divergent species richness modelling frameworks - stacked species distribution models (SSDM) and macroecological models (MEM) - for three ecologically and evolutionary distinct taxonomic groups (vascular plants, bryophytes and lichens). Predictions from models including biotic interactions were compared to the predictions of models based on climatic and abiotic data only. Including plant-plant interactions consistently and significantly lowered bias in species richness predictions and increased predictive power for independent evaluation data when compared to the conventional climatic and abiotic data based models. Improvements in predictions were constant irrespective of the modelling framework or taxonomic group used. The global biodiversity crisis necessitates accurate predictions of how changes in biotic and abiotic conditions will potentially affect species richness patterns. Here, we demonstrate that models of the spatial distribution of species richness can be improved by incorporating biotic interactions, and thus that these key predictor factors must be accounted for in biodiversity forecasts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal societies rely on interactions between group members to effectively communicate and coordinate their actions. To date, the transmission properties of interaction networks formed by direct physical contacts have been extensively studied for many animal societies and in all cases found to inhibit spreading. Such direct interactions do not, however, represent the only viable pathways. When spreading agents can persist in the environment, indirect transmission via 'same-place, different-time' spatial coincidences becomes possible. Previous studies have neglected these indirect pathways and their role in transmission. Here, we use rock ant colonies, a model social species whose flat nest geometry, coupled with individually tagged workers, allowed us to build temporally and spatially explicit interaction networks in which edges represent either direct physical contacts or indirect spatial coincidences. We show how the addition of indirect pathways allows the network to enhance or inhibit the spreading of different types of agent. This dual-functionality arises from an interplay between the interaction-strength distribution generated by the ants' movement and environmental decay characteristics of the spreading agent. These findings offer a general mechanism for understanding how interaction patterns might be tuned in animal societies to control the simultaneous transmission of harmful and beneficial agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large amount of data for inconspicuous taxa is stored in natural history collections; however, this information is often neglected for biodiversity patterns studies. Here, we evaluate the performance of direct interpolation of museum collections data, equivalent to the traditional approach used in bryophyte conservation planning, and stacked species distribution models (S-SDMs) to produce reliable reconstructions of species richness patterns, given that differences between these methods have been insufficiently evaluated for inconspicuous taxa. Our objective was to contrast if species distribution models produce better inferences of diversity richness than simply selecting areas with the higher species numbers. As model species, we selected Iberian species of the genus Grimmia (Bryophyta), and we used four well-collected areas to compare and validate the following models: 1) four Maxent richness models, each generated without the data from one of the four areas, and a reference model created using all of the data and 2) four richness models obtained through direct spatial interpolation, each generated without the data from one area, and a reference model created with all of the data. The correlations between the partial and reference Maxent models were higher in all cases (0.45 to 0.99), whereas the correlations between the spatial interpolation models were negative and weak (-0.3 to -0.06). Our results demonstrate for the first time that S-SDMs offer a useful tool for identifying detailed richness patterns for inconspicuous taxa such as bryophytes and improving incomplete distributions by assessing the potential richness of under-surveyed areas, filling major gaps in the available data. In addition, the proposed strategy would enhance the value of the vast number of specimens housed in biological collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work analyzes sunshine duration variability in the western part of Europe (WEU) over the 1938– 2004 period. A principal component analysis is applied to cluster the original series from 79 sites into 6 regions, and then annual and seasonal mean series are constructed on regional and also for the whole WEU scales. Over the entire period studied here, the linear trend of annual sunshine duration is found to be nonsignificant. However, annual sunshine duration shows an overall decrease since the 1950s until the early 1980s, followed by a subsequent recovery during the last two decades. This behavior is in good agreement with the dimming and brightening phenomena described in previous literature. From the seasonal analysis, the most remarkable result is the similarity between spring and annual series, although the spring series has a negative trend; and the clear significant increase found for the whole WEU winter series, being especially large since the 1970s. The behavior of the major synoptic patterns for two seasons is investigated, resulting in some indications that sunshine duration evolution may be partially explained by changes in the frequency of some of them

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to describe patterns of diversity of Baetidae (Ephemeroptera) at the ommunity and population levels within the Montseny Mountain range (North-East Iberian Peninsula). We studied both the distribution of 4 species of baetids in 20 sites among three catchments along the altitudinal gradient (350-1700 masl); and the genetic diversity of the mtDNA cytochrome c oxidase subunit I (cox1) gene of the two common species Baetis alpinus and Baetis rhodani. We found a gradual replacement of the dominant species along the altitudinal gradient. Baetis alpinus inhabited sites at high-altitudes, and this species was replaced by B. rhodani when the altitude decreased. Baetis melanonyx and Alainites muticus attained low abundance at all river sections, and no clear altitudinal trend appeared. Our hypothesis at the population level was that genetic structuring is associated with geographic distance and limited by drainage boundaries among the three studied catchments because of the short-time dispersion of adults. Unexpectedly, analyses of molecular variance (AMOVA) and isolation-bydistance (IBD) showed genetic diversity was unstructured by distance for both species, which may be explained by the relatively short spatial scale studied and small topographic barriers among the three catchments. The Generalized Mixed Yule-Coalescent (GMYC) model showed that B. rhodani had two differentiated genetic lineages that co-occurred in all sites. Overall, diversity of baetids was structured at the community level along the altitudinal gradient, whereas it was unstructured at the population level within the Montseny Mountain range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to describe patterns of diversity of Baetidae (Ephemeroptera) at the ommunity and population levels within the Montseny Mountain range (North-East Iberian Peninsula). We studied both the distribution of 4 species of baetids in 20 sites among three catchments along the altitudinal gradient (350-1700 masl); and the genetic diversity of the mtDNA cytochrome c oxidase subunit I (cox1) gene of the two common species Baetis alpinus and Baetis rhodani. We found a gradual replacement of the dominant species along the altitudinal gradient. Baetis alpinus inhabited sites at high-altitudes, and this species was replaced by B. rhodani when the altitude decreased. Baetis melanonyx and Alainites muticus attained low abundance at all river sections, and no clear altitudinal trend appeared. Our hypothesis at the population level was that genetic structuring is associated with geographic distance and limited by drainage boundaries among the three studied catchments because of the short-time dispersion of adults. Unexpectedly, analyses of molecular variance (AMOVA) and isolation-bydistance (IBD) showed genetic diversity was unstructured by distance for both species, which may be explained by the relatively short spatial scale studied and small topographic barriers among the three catchments. The Generalized Mixed Yule-Coalescent (GMYC) model showed that B. rhodani had two differentiated genetic lineages that co-occurred in all sites. Overall, diversity of baetids was structured at the community level along the altitudinal gradient, whereas it was unstructured at the population level within the Montseny Mountain range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution and traits of fish are of interest both ecologically and socio-economically. In this thesis, phenotypic and structural variation in fish populations and assemblages was studied on multiple spatial and temporal scales in shallow coastal areas in the archipelago of the northern Baltic Proper. In Lumparn basin in Åland Islands, the fish assemblage displayed significant seasonal variation in depth zone distribution. The results indicate that investigating both spatial and temporal variation in small scale is crucial for understanding patterns in fish distribution and community structure in large scale. The local population of Eurasian perch Perca fluviatilis L displayed habitat-specific morphological and dietary variation. Perch in the pelagic zone were on average deeper in their body shape than the littoral ones and fed on fish and benthic invertebrates. The results differ from previous studies conducted in freshwater habitats, where the pelagic perch typically are streamlined in body shape and zooplanktivorous. Stable isotopes of carbon and nitrogen differed between perch with different stomach contents, suggesting differentiation of individual diet preferences. In the study areas Lumparn and Ivarskärsfjärden in Åland Islands and Galtfjärden in Swedish east coast, the development in fish assemblages during the 2000’s indicated a general shift towards higher abundances of small-bodied lower-order consumers, especially cyprinids. For European pikeperch Sander lucioperca L., recent declines in adult fish abundances and high mortalities (Z = 1.06–1.16) were observed, which suggests unsustainably high fishing pressure on pikeperch. Based on the results it can be hypothesized that fishing has reduced the abundances of large predatory fish, which together with bottom-up forcing by eutrophication has allowed the lower-order consumer species to increase in abundances. This thesis contributes to the scientific understanding of aquatic ecosystems with new descriptions on morphological and dietary adaptations in perch in brackish water, and on the seasonal variation in small-scale spatial fish distribution. The results also demonstrate anthropogenic effects on coastal fish communities and underline the urgency of further reducing nutrient inputs and regulating fisheries in the Baltic Sea region.