998 resultados para soil nutrients
Resumo:
In Rio Grande do Sul State (RS), Southern Brazil, aluminum saturation in many areas under no-till system is high and base saturation low in the 0.10-0.20 m layer (subsurface), which may reduce the grain yield of annual crops. The objective of this study was to evaluate if the occurrence of high aluminum saturation and low base saturation in the subsurface, under a no-till system, represents a restrictive environment for crop production, as well as to evaluate forms of lime incorporation for soil acidity correction in the subsurface. For this purpose, an experiment was carried out with soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) crops, in a Rhodic Hapludox (USDA, 1999) with sandy loam texture, under no-till for four years in the county of Tupanciretã (RS). The six treatments were: no-tillage with and without lime, plowing with and without lime, and chiseling with and without lime. The values of pH-H2O, aluminum saturation and base saturation were evaluated 24 months after treatment application in the layers 0-0.05; 0.05-0.10; 0.10-0.15; 0.15-0.20 and 0.20-0.30 m. The yields of soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) were evaluated. Soil acidity in the subsurface did not affect crop yield when the acidity in the layer from 0-0.10 m was at levels for which lime application is not recommended, according to CQFSRS/SC (2004). Lime incorporation through plowing was the most efficient way of correcting acidity at deeper levels.
Resumo:
In the areas where irrigated rice is grown in the south of Brazil, few studies have been carried out to investigate the spatial variability structure of soil properties and to establish new forms of soil management as well as determine soil corrective and fertilizer applications. In this sense, this study had the objective of evaluating the spatial variability of chemical, physical and biological soil properties in a lowland area under irrigated rice cultivation in the conventional till system. For this purpose, a 10 x 10 m grid of 100 points was established, in an experimental field of the Embrapa Clima Temperado, in the County of Capão do Leão, State of Rio Grande do Sul. The spatial variability structure was evaluated by geostatistical tools and the number of subsamples required to represent each soil property in future studies was calculated using classical statistics. Results showed that the spatial variability structure of sand, silt, SMP index, cation exchange capacity (pH 7.0), Al3+ and total N properties could be detected by geostatistical analysis. A pure nugget effect was observed for the nutrients K, S and B, as well as macroporosity, mean weighted diameter of aggregates, and soil water storage. The cross validation procedure, based on linear regression and the determination coefficient, was more efficient to evaluate the quality of the adjusted mathematical model than the degree of spatial dependence. It was also concluded that the combination of classical with geostatistics can in many cases simplify the soil sampling process without losing information quality.
Resumo:
Selostus: Maan fosforitilan muutos pitkäaikaisessa kenttäkokeessa hietamaalla
Resumo:
Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.
Resumo:
Compaction is one of the most destructive factors of soil quality, however the effects on the microbial community and enzyme activity have not been investigated in detail so far. The objective of this study was to evaluate the effects of soil compaction caused by the traffic of agricultural machines on the soil microbial community and its enzyme activity. Six compaction levels were induced by tractors with different weights driving over a Eutrustox soil and the final density was measured. Soil samples were collected after corn from the layers 0-0.10 and 0.10-0.20 m. The compaction effect on all studied properties was evident. Total bacteria counts were reduced significantly (by 22-30 %) and by 38-41 % of nitrifying bacteria in the soil with highest bulk density compared to the control. On the other hand, fungi populations increased 55-86 % and denitrifying bacteria 49-53 %. Dehydrogenase activity decreased 20-34 %, urease 44-46 % and phosphatase 26-28 %. The organic matter content and soil pH decreased more in the 0-0.10 than in the 0.10-0.20 m layer and possibly influenced the reduction of the microbial counts, except denitrifying bacteria, and all enzyme activities, except urease. Results indicated that soil compaction influences the community of aerobic microorganisms and their activity. This effect can alter nutrient cycling and reduce crop yields.
Resumo:
Despite the agricultural importance of Indian Black Earth (IBE) in the Amazon region, there are few studies that report on the relation between soil texture and chemical fertility of IBE. These soils of pre-Colombian origin, with high contents of P, Ca and other nutrients are found across the Amazon valley. IBE profiles were studied to evaluate the total contents of P, its primary chemical forms and the P transformation phases in areas with IBE soils of variable texture and in adjacent reference soils. The soil texture strongly influenced soil fertility, changing in terms of transformation of the primary P forms and, consequently, predominant P forms in IBE. Soils with texture varying between clay and heavy clay had higher total P contents and primary Ca-P forms. Highest P-Al and lowest total P amounts were observed at the site Rio Preto da Eva, where texture varies from sandy loam to sandy clay loam. In the IBE with clay texture the amounts of soluble P, extracted with NH4Cl were highest, although different from Mehlich 1-extractable amounts.
Resumo:
Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.
Resumo:
The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.
The effect of plantation silviculture on soil organic matter and particle-size fractions in Amazonia
Resumo:
Eucalyptus grandis and other clonal plantations cover about 3.5 million ha in Brazil. The impacts of intensively-managed short-rotation forestry on soil aggregate structure and Carbon (C) dynamics are largely undocumented in tropical ecosystems. Long-term sustainability of these systems is probably in part linked to maintenance of soil organic matter and good soil structure and aggregation, especially in areas with low-fertility soils. This study investigated soil aggregate dynamics on a clay soil and a sandy soil, each with a Eucalyptus plantation and an adjacent primary forest. Silvicultural management did not reduce total C stocks, and did not change soil bulk density. Aggregates of the managed soils did not decrease in mass as hypothesized, which indicates that soil cultivation in 6 year cycles did not cause large decreases in soil aggregation in either soil texture. Silt, clay, and C of the sandy plantation soil shifted to greater aggregate protection, which may represent a decrease in C availability. The organic matter in the clay plantation soil increased in the fractions considered less protected while this shift from C to structural forms considered more protected was not observed.
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
Different management systems tend to modify soil structure and porosity over the years. The aim of this study was to study modifications in the morphostructure and porosity of dystroferric Red Latosol (Oxisol) under conventional tillage and no-tillage over a 31- year period. The study began with the description of soil profiles based on the cropping profile method, to identify the most compact structures, define sample collection points for physical and chemical analysis, and determine the water retention curve. A forest soil profile was described and used as reference. The results showed that, under conventional tillage, the microaggregate structure of the Oxisol was fragmented between 0 and 0.20 m, and compact (bulk density = 1.52 Mg m-3) in the sub-surface layer between 0.20 and 0.50 m. Under no-tillage, the structure became compacted (bulk density = 1.40 Mg m-3) between 0 and 0.60 m, but contained fissures and biopores. The volume of the class with a pore diameter of > 100 µm under no-tillage was limited, but practically non-existent in the conventional management system. On the other hand, the classes with a pore diameter of < 100 µm were not affected by the type of soil management system.
Resumo:
Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.
Resumo:
Of all nutrients, N has the strongest effect on grass growth and an adequate N fertilization can reduce the time required for the formation of high-quality mats. This study aimed to evaluate the influence of N fertilization on Bermuda grass sod production and quality. The experiment was conducted in an area of commercial sod production, in Capela do Alto, state of São Paulo. Cynodon dactylon (Pers) L., known as Bermuda grass, was evaluated in a randomized complete block design with five treatments and four replications. Treatments consisted of five N rates: 0, 150, 300, 450 and 600 kg ha-1. Increasing N applications to Bermuda grass increased the soil cover rate, reducing the time required for mat formation. The accumulation of rhizome + root + stolon dry matter was highest at a rate of 354 kg ha-1 N and the mat resistance to breakage at a rate of 365 kg ha-1 N. Nitrogen rates between 354 and 365 kg ha-1 increased mat resistance and consequently the suitability for postharvest handling, tending to improve the efficiency in the area.
Resumo:
Tobacco farmers of southern Brazil use high levels of fertilizers, without considering soil and environmental attributes, posing great risk to water resources degradation. The objective of this study was to monitor nitrate and ammonium concentrations in the soil solution of an Entisol in and below the root zone of tobacco under conventional tillage (CT), minimum tillage (MT) and no-tillage (NT). The study was conducted in the small-watershed Arroio Lino, in Agudo, State of Rio Grande do Sul, Brazil. A base fertilization of 850 kg ha-1 of 10-18-24 and topdressing of 400 kg ha-1 of 14-0-14 NPK fertilizer were applied. The soil solution was sampled during the crop cycle with a tension lysimeter equipped with a porous ceramic cup. Ammonium and nitrate concentrations were analyzed by the distillation and titration method. Nitrate concentrations, ranging from 8 to 226 mg L-1, were highest after initial fertilization and decreased during the crop cycle. The average nitrate (N-NO3-) concentration in the root zone was 75 in NT, 95 in MT, and 49 mg L-1 in CT. Below the root zone, the average nitrate concentration was 58 under NT, 108 under MT and 36 mg L-1 under CT. The nitrate and ammonium concentrations did not differ significantly in the management systems. However, the nitrate concentrations measured represent a contamination risk to groundwater of the watershed. The ammonium concentration (N-NH4+) decreased over time in all management systems, possibly as a result of the nitrification process and root uptake of part of the ammonium by the growing plants.