994 resultados para small Peptides
Resumo:
The relative contributions of Alzheimer disease (AD) and vascular lesion burden to the occurrence of cognitive decline are more difficult to define in the oldest-old than they are in younger cohorts. To address this issue, we examined 93 prospectively documented autopsy cases from 90 to 103 years with various degrees of AD lesions, lacunes, and microvascular pathology. Cognitive assessment was performed prospectively using the Clinical Dementia Rating scale. Neuropathologic evaluation included the Braak neurofibrillary tangle (NFT) and β-amyloid (Aβ) protein deposition staging and bilateral semiquantitative assessment of vascular lesions. Statistics included regression models and receiver operating characteristic analyses. Braak NFTs, Aβ deposition, and cortical microinfarcts (CMIs) predicted 30% of Clinical Dementia Rating variability and 49% of the presence of dementia. Braak NFT and CMI thresholds yielded 0.82 sensitivity, 0.91 specificity, and 0.84 correct classification rates for dementia. Using these threshold values, we could distinguish 3 groups of demented cases and propose criteria for neuropathologic definition of mixed dementia, pure vascular dementia, and AD in very old age. Braak NFT staging and severity of CMI allow for defining most of demented cases in the oldest-old. Most importantly, single cutoff scores for these variables that could be used in the future to formulate neuropathologic criteria for mixed dementia in this age group were identified.
Resumo:
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1–2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides
Resumo:
Small Business: Referral Information on Programs to Assist Women and Minorities in Establishing and Expanding Small Businesses
Resumo:
Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.
Resumo:
Agro-ecosystems have recently experienced dramatic losses of biodiversity due to more intensive production methods. In order to increase species diversity, agri-environment schemes provide subsidies to farmers who devote a fraction of their land to ecological compensation areas (ECA). Several studies have shown that invertebrate biodiversity is actually higher in ECA than in nearby intensively cultivated farmland. It remains poorly understood, however, to what extent ECA also favour vertebrates, such as small mammals and their predators, which would contribute to restore functioning food chains within revitalized agricultural matrices. We studied small mammal populations among eight habitat types - including wildflower areas, a specific ECA in Switzerland - and habitat selection (radiotracking) by the barn owl Tyto alba, one of their principal predators. Our prediction was that habitats with higher abundances of small mammals would be more visited by foraging Barn owls during the period of chicks' provisioning. Small mammal abundance tended to be higher in wildflower areas than in any other habitat type. Barn owls, however, preferred to forage in cereal fields and grassland. They avoided all types of crops other than cereals, as well as wildflower areas, which suggests that they do not select their hunting habitat primarily with respect to prey density. Instead of prey abundance, prey accessibility may play a more crucial role: wildflower areas have a dense vegetation cover, which may impede access to prey for foraging owls. The exploitation of wildflower areas by the owls might be enhanced by creating open foraging corridors within or around wildflower areas. Wildflower areas managed in that way might contribute to restore functioning food chains within agro-ecosystems.
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.
Resumo:
Background a nd A ims: The prevalence of small intestinal bowel bacterial o vergrowth (SIBO) i n patients w ith irritable bowel syndrome (IBS) ranges from 43% to 78% as determined by t he lactulose hydrogen breath (LHBT) t est. Although rifaximine, a non-absorbable antibiotic, h as b een able to decrease I BS s ymptoms i n placebo-controlled r andomized trials, these results were not repeated in phase IV studies. We aimed to assess the prevalence of SIBO in an IBS cohort and to evaluate the response to rifaximin. Methods: I BS p atients f ulfilled Rome III criteria, had an absence of alarm symptoms, n ormal f ecal c alproectin, and normal e ndoscopic workup. They underwent lactulose hydrogen breath t esting (LHBT) for SIBO diagnosis. P atients with SIBO were t reated w ith rifaximine tablets f or 14 d ays. Symptoms were a ssessed by q uestionnaires before rifaximin treatment and at week 6. Results: Hundred-fifty IBS patients were enrolled (76% female, mean age 44 ± 16 years), of whom 106 (71%) were diagnosed with SIBO and consequently treated with rifaximine. Rifaximine treatment s ignificantly reduced the following symptoms as assessed by t he s ymptom q uestionnaire: bloating (5.5 ± 2.6 before vs. 3 .6 ± 2.7 after treatment, p <0.001), flatulence (5 ± 2.7 vs. 4 ± 2.7, p = 0.015), diarrhea (2.9 ± 2.4 vs. 2 ± 2.4, p = 0.005), abdominal pain (4.8 ± 2.7 vs. 3.3 ± 2.5, p <0.001) and resulted in improved overall well-being (3.9 ± 2.4 vs. 2.7 ± 2.3, p <0.001). The LHBT was repeated 2-4 weeks after rifaximine treatment in 6 5/93 (70%) patients. Eradication of SIBO was documented in 85% of all patients (55/65). Conclusions: The results o f our phase IV trial i ndicate that a high proportion of IBS p atients t ested positive f or SIBO. I BS symptoms w ere significantly diminished following a 2-week treatment with rifaximine.
Resumo:
The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.
Resumo:
We investigate the benefits and experimental feasibility of approaches enabling the shift from short (1.7kDa on average) peptides in bottom-up proteomics to about twice longer (~3.2kDa on average) peptides in the so-called extended bottom-up proteomics. Candida albicans secreted aspartic protease Sap9 has been selected for evaluation as an extended bottom-up proteomic-grade enzyme due to its suggested dibasic cleavage specificity and ease of production. We report the extensive characterization of Sap9 specificity and selectivity revealing that protein cleavage by Sap9 most often occurs in the vicinity of proximal basic amino acids, and in select cases also at basic and hydrophobic residues. Sap9 is found to cleave a large variety of proteins in a relatively short, ~1h, period of time and it is efficient in a broad pH range, including slightly acidic, e. g., pH5.5, conditions. Importantly, the resulting peptide mixtures contain representative peptides primarily in the target 3-7kDa range. The utility and advantages of this enzyme in routine analysis of protein mixtures are demonstrated and the limitations are discussed. Overall, Sap9 has a potential to become an enzyme of choice in an extended bottom-up proteomics, which is technically ready to complement the traditional bottom-up proteomics for improved targeted protein structural analysis and expanded proteome coverage. BIOLOGICAL SIGNIFICANCE: Advances in biological applications of mass spectrometry-based bottom-up proteomics are oftentimes limited by the extreme complexity of biological samples, e.g., proteomes or protein complexes. One of the reasons for it is in the complexity of the mixtures of enzymatically (most often using trypsin) produced short (<3kDa) peptides, which may exceed the analytical capabilities of liquid chromatography and mass spectrometry. Information on localization of protein modifications may also be affected by the small size of typically produced peptides. On the other hand, advances in high-resolution mass spectrometry and liquid chromatography have created an intriguing opportunity of improving proteome analysis by gradually increasing the size of enzymatically-derived peptides in MS-based bottom-up proteomics. Bioinformatics has already confirmed the envisioned advantages of such approach. The remaining bottle-neck is an enzyme that could produce longer peptides. Here, we report on the characterization of a possible candidate enzyme, Sap9, which may be considered for producing longer, e.g., 3-7kDa, peptides and lead to a development of extended bottom-up proteomics.
Resumo:
Within the framework of the Rare Cancer Network Study, we examined 30 patients suffering from small cell neuroendocrine prostate cancer, either in an early/localized or an advanced/metastatic stage. Patients were treated with cisplatin-based chemotherapy, with or without pelvic radiotherapy. Two patients with early disease achieved complete remission for a duration of 19 and 22 months. Three patients with advanced disease achieved complete remission for 6, 7, and 54 months, respectively. Twenty-five patients succumbed to massive local and/or distant failure. No patient presented with brain metastases as the initial site of relapse. Small cell neuroendocrine prostate carcinoma is a very aggressive disease with a poor prognosis, even in its localized form. Despite initial response, the common cisplatin-based chemotherapy plus radiotherapy failed to improve outcome markedly. Improvement will come from understanding the biology of the disease and integrating new targeted therapies into the treatment of this rare and aggressive tumor.
Resumo:
This paper examines empirically the determinants of decentralization of decision- making in the firm for small and medium-sized enterprises (SMEs) that tend to be highly centralized. By decentralization of decisions we mean the delegation of decision rights from the owner or manager to the plant supervisor or even to floor workers. Our findings show that the allocation of authority to basic workers or a team of workers depends on firm characteristics such as firm size, the use of internal networks or the number of workplaces, and workers characteristics, in particular, the composition of the laborforce in terms of education and seniority and whether or not workers receive pay incentives. External factors such as the intensity of competition and the firm s export intensity are also important determinants of the allocation of authority.
Resumo:
Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of antigenic peptides with murine MHC class I molecules on living cells. Photoreactive derivatives were prepared by N-terminal amidation with iodo, 4-azido salicylic acid of the Kd restricted Plasmodium berghei circumsporozoite (P.b. CS) peptide 253-260 (YIPSAEKI) and the Db-restricted Adenovirus 5 early region 1A (Ad5 E1A) peptide 234-243 (SGPSNTPPEI). As assessed in functional competition experiments, both peptide derivatives retained the specific binding activity of the parental peptides for Kd or Dd, respectively. The P.b. CS photoprobe specifically labeled Kd molecules on P815 (H-2d) cells, but failed to label RMA (H-2b) cells. Conversely, the Ad5 E1A photoprobe specifically labeled Db molecules on RMA cells, but failed to label P815 cells. When the two photoprobes were tested on a panel of Con A-activated spleen cells expressing 10 different H-2 haplotypes, significant photoaffinity labeling was observed only on H-2d cells with the P.b. CS photoprobe and on H-2b cells with the Ad5 E1A photoprobe. Labeling of cell-associated Kd or Db molecules with the photoprobes was specifically inhibited by antigenic peptides known to be presented by the same class I molecule. Photoaffinity labeling of Kd with the P.b. CS photoprobe was used to study the dynamics of peptide binding on living P815 cells. Binding increased steadily with the incubation period (up to 8 h) at 37 degrees C and at ambient temperature, but was greatly reduced (greater than 95%) at 0 to 4 degrees C or in the presence of ATP synthesis inhibitors. The magnitude of the labeling was twofold higher at room temperature than at 37 degrees C. In contrast, binding to isolated Kd molecules in solution rapidly reached maximal binding, particularly at 37 degrees C. Dissociation of the photoprobe from either cell-associated or soluble Kd molecules was similar, with a half time of approximately 1 h at 37 degrees C, whereas the complexes were long-lived at 4 degrees C in both instances.
Resumo:
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (.100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.
Resumo:
A generic LC-MS approach for the absolute quantification of undigested peptides in plasma at mid-picomolar levels is described. Nine human peptides namely, brain natriuretic peptide (BNP), substance P (SubP), parathyroid hormone 1-34 (PTH), C-peptide, orexines A and B (Orex-A and -B), oxytocin (Oxy), gonadoliberin-1 (gonadothropin releasing-hormone or luteinizing hormone-releasing hormone, LHRH) and α-melanotropin (α-MSH) were targeted. Plasma samples were extracted via a 2-step procedure: protein precipitation using 1vol of acetonitrile followed by ultrafiltration of supernatants on membranes with a MW cut-off of 30 kDa. By applying a specific LC-MS setup, large volumes of filtrates (e.g., 2×750 μL) were injected and the peptides were trapped on a 1mm i.d.×10 mm length C8 column using a 10× on-line dilution. Then, the peptides were back-flushed and a second on-line dilution (2×) was applied during the transfer step. The refocalized peptides were resolved on a 0.3mm i.d. C18 analytical column. Extraction recovery, matrix effect and limits of detection were evaluated. Our comprehensive protocol demonstrates a simple and efficient sample preparation procedure followed by the analysis of peptides with limits of detection in the mid-picomolar range. This generic approach can be applied for the determination of most therapeutic peptides and possibly for endogenous peptides with latest state-of-the-art instruments.
Resumo:
Some of the elements that characterize the globalization of food and agriculture are industrialization and intensification of agriculture and liberalization of agricultural markets, that favours elongation of the food chain and homogenization of food habits (nutrition transition), among other impacts. As a result, the probability of food contamination has increased with the distance and the number of “hands" that may contact the food (critical points); the nutritional quality of food has been reduced because of increased transport and longer periods of time from collection to consumption; and the number of food-related diseases due to changes in eating patterns has increased. In this context, there exist different agencies and regulations intended to ensure food safety at different levels, e.g. at the international level, Codex Alimentarius develops standards and regulations for the marketing of food in a global market. Although governments determine the legal framework, the food industry manages the safety of their products, and thus, develops its own standards for their marketing, such as the Good Agricultural Practices (GAP) programs. The participation of the private sector in the creation of regulatory standards strengthens the free trade of food products, favouring mostly large agribusiness companies. These standards are in most cases unattainable for small producers and food safety regulations are favouring removal of the peasantry and increase concentration and control in the food system by industrial actors. Particularly women, who traditionally have been in charge of the artisanal transformation process, can be more affected by these norms than men. In this project I am analysing the impcact of food safety norms over small farms, based on the case of artisanal production made by women in Spain.