931 resultados para single stage power conversion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A robust 12 kW rectifier with low THD in the line currents, based on an 18-pulse transformer arrangement with reduced kVA capacities followed by a high-frequency isolation stage is presented in this work. Three full-bridge (buck-based) converters are used to allow galvanic isolation and to balance the dc-link currents, without current sensing or current controller. The topology provides a regulated dc output with a very simple and well-known control strategy and natural three-phase power factor correction. The phase-shift PWM technique, with zero-voltage switching is used for the high-frequency dc-dc stage. Analytical results from Fourier analysis of winding currents and the vector diagram of winding voltages are presented. Experimental results from a 12 kW prototype are shown in the paper to verify the efficiency, robustness and simplicity of the command circuitry to the proposed concept.
Resumo:
The problems of wave propagation and power flow in the distribution network composed of an overhead wire parallel to the surface of the ground have not been satisfactorily solved. While a complete solution of the actual problem is impossible, as it is explained in the famous Carson's paper (1926), the solution of the problem, where the actual earth is replaced by a plane homogenous semi-infinite solid, is of considerable interest. In this paper, a power flow algorithm in distribution networks with earth return, based on backward-forward technique, is discussed. In this novel use of the technique, the ground is explicitly represented. In addition, an iterative method for determining impedance for modelling ground effect in the extended power flow algorithm is suggested. Results obtained from single-wire and three-wire studies using IEEE test networks are presented and discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A CMOS/SOI circuit to decode Pulse-Width Modulation (PWM) signals is presented as part of a body-implanted neurostimulator for visual prosthesis. Since encoded data is the sole input to the circuit, the decoding technique is based on a novel double-integration concept and does not require low-pass filtering. Non-overlapping control phases are internally derived from the incoming pulses and a fast-settling comparator ensures good discrimination accuracy in the megahertz range. The circuit was integrated on a 2 mum single-metal thin-film CMOS/SOI fabrication process and has an effective area of 2 mm(2). Measured resolution of encoding parameter a is better than 10% at 6 MHz and V-DD = 3.3 V. Idle-mode consumption is 340 LW. Pulses of frequencies up to 15 MHz and alpha = 10% can be discriminated for 2.3 V less than or equal to V-DD less than or equal to 3.3 V. Such an excellent immunity to V-DD deviations meets a design specification with respect to inherent coupling losses on transmitting data and power by means of a transcutaneous link.
Resumo:
This paper presents an improved analysis of a novel Programmable Power-factor-corrected-Based Hybrid Multipulse Power Rectifier (PFC-HMPR) for utility interface of power electronic converters. The proposed hybrid multipulse rectifier is composed of an ordinary three-phase six-pulse diode-bridge rectifier (Graetz bridge) with a parallel connection of single-phase switched converters in each three-phase rectifier leg. In this paper, the authors present a complete discussion about the controlled rectifiers' power contribution and also a complete analysis concerning the total harmonic distortion of current that can be achieved when the proposed converter operates as a conventional 12-pulse rectifier. The mathematical analysis presented in this paper corroborate, with detailed equations, the experimental results of two 6-kW prototypes implemented in a laboratory.
Resumo:
We study the growth dynamics of the size of manufacturing firms considering competition and normal distribution of competency. We start with the fact that all components of the system struggle with each other for growth as happened in real competitive business world. The detailed quantitative agreement of the theory with empirical results of firms growth based on a large economic database spanning over 20 years is good with a single set of the parameters for all the curves. Further, the empirical data of the variation of the standard deviation of the growth rate with the size of the firm are in accordance with the present theory rather than a simple power law. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.
Resumo:
A novel hybrid three-phase rectifier is proposed. It is capable to achieve high input power factor (PF) and low total harmonic input currents distortion (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase six-pulse diode rectifier (Graetz bridge) with a parallel connection of single-phase Sepic rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this work describes its principles, with detailed operation, simulation, experimental results, and discussions on power rating of the required Sepic converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Sepic converters, making the proposed solution economically viable for very high power installations, with fast investment payback. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing dc-link. A prototype has been implemented in the laboratory and it was fully demonstrated to both operate with excellent performance and be feasibly implemented in higher power applications.
Resumo:
Symbolic power is discussed with reference to mathematics and formal languages. Two distinctions are crucial for establishing mechanical and formal perspectives: one between appearance and reality, and one between sense and reference. These distinctions include a nomination of what to consider primary and secondary. They establish the grammatical format of a mechanical and a formal world view. Such views become imposed on the domains addressed by means of mathematics and formal languages. Through such impositions symbolic power of mathematics becomes exercised. The idea that mathematics describes as it prioritises is discussed with reference to robotting and surveillance. In general, the symbolic power of mathematics and formal languages is summarised through the observations: that mathematics treats parts and properties as autonomous, that it dismembers what it addresses and destroys the organic unity around things, and that it simplifies things and reduces them to a single feature. But, whatever forms the symbolic power may take, it cannot be evaluated along a single good-bad axis.
Resumo:
Considering the Conservative Power Theory (CPT), this paper proposes some novel compensation strategies for shunt passive or active devices. The CPT current decompositions result in several current terms (associated with specific physical phenomena), which were used for the definition of different selective current compensators, in terms of minimizing particular disturbing effects. Simulation results have been demonstrated in order to validate the possibilities and performance of the proposed strategies for single and three-phase four wired circuits.
Resumo:
Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent alpha = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 +/- 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system. Citation: Negron-Juarez, R. I., J. Q. Chambers, G. Guimaraes, H. Zeng, C. F. M. Raupp, D. M. Marra, G. H. P. M. Ribeiro, S. S. Saatchi, B. W. Nelson, and N. Higuchi (2010), Widespread Amazon forest tree mortality from a single cross-basin squall line event, Geophys. Res. Lett., 37, L16701, doi:10.1029/2010GL043733.
Resumo:
Technical and economic feasibility of using natural gas as a non-polluting energy source was studied. Conversion of electric ovens to gas-fired ovens for the preparation of aluminum plates for laminations was used as an example of this application. Four cases were evaluated for the use of heat derived from residual gases following combustion of the natural gas. Additionally, two possibilities are included for the use of systems of co-generation; one using an internal combustion engine, and second using a gas turbine. Results suggested that it was technically and economically feasible to convert the electric ovens considered to natural gas-operated ovens.
Resumo:
This paper presents a novel isolated electronic ballast for multiple fluorescent lamps, featuring high power-factor, and high efficiency. Two stages compose this new electronic ballast, namely, a new voltage step-down isolated Sepic rectifier, and a classical resonant Half-Bridge inverter. The new isolated Sepic rectifier is obtained from a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The average-current control technique is used in this preregulator stage in order to provide low phase displacement and low Total-Harmonic-Distortion (THD) at input current, resulting in high power-factor, and attending properly IEC 61000-3-2 standards. The resonant Half-Bridge inverter performs Zero-Voltage-Switching (ZVS), providing conditions for the obtaining of overall high efficiency. It is developed a design example for the new isolated electronic ballast rated at 200W output power, 220Vrms input voltage, 115Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Finally, experimental results are presented in order to verify the developed analysis. The THD at input current is equal to 5.25%, for an input voltage THD equal to 1.63%, and the measured overall efficiency is about 88.25%, at rated load.