909 resultados para silica
NMR study of ion-conducting organic-inorganic nanocomposites poly(ethylene glycol) - Silica - LiClO4
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes, were obtained by dissolution of LiClO4 into silica/poly(ethylene glycol) matrices. Solid-state nuclear magnetic resonance (NMR) was used to probe the inorganic phase structure (Si-29) and the effects of the temperature and composition on the dynamic behavior of the ionic species (Li-7) and the polymer chains (H-1 and C-13). The NMR results between -100 and +90 degrees C show a strong correlation with ionic conductivity and differential scanning calorimetry experiments. The results also demonstrate that the cation mobility is assisted by segmental motion of the polymer, which is in agreement with the results previously reported for pure poly(ethylene oxide), PEG, electrolytes.
Resumo:
In this work we have made use of the study of the interaction between Fe(TDCPP)(+) and the axial ligands OH- and imidazole in order to help characterize the heterogenized catalysts Fe(TDCPP)SG and Fe(TDCPP)IPG through UV-VIS and EPR spectroscopies and thus, better understand their different catalytic activity in the oxidation of cyclohexane by PhIO. We have found out that in Fe(TDCPP)SG (containing 1.2 X 10(-6) mol Fe(TDCPP)(+)/g of support), the FeP bis-coordinates to silica gel through Fe-O coordination and it is high-spin (FeP)-P-III species. In Fe(TDCPP)IPG 1 (containing 1.1 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-4) mol imidazole/g of support), the FeP is bis-ligated to imidazole propyl gel through Fe-imidazole coordination and using NO as a paramagnetic probe, we present evidence that Fe(TDCPP)(+) is present as a mixture of low-spin (FeP)-P-III and (FeP)-P-II species. This catalyst led to a relative low yield of cyclohexanol (25%) because the bis-coordination of the (FeP)-P-III to the support partially blocks the reaction between Fe(TDCPP)(+) and PhIO, thus leading to the formation of only a small amount of the active species Fe-IV(OP+, while the (FeP)-P-II species do not react with the oxygen donor. Increasing the amount of Fe(TDCPP)(+) and decreasing the amount of imidazole in the support led to the obtention of high-spin (FeP)-P-III EPR signals in the spectra of Fe(TDCPP)IPG 5 (containing 4.4 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-5) mol imidazole/g of IPG), together with low-spin (FeP)-P-III species. This latter catalyst led to better cyclohexanol yields (67%) than Fe(TDCPP)IPG 1. Fe(TDCPP)IPG 5 was further used in a study of the optimization of its catalytic activity and in recycling experiments in the optimized conditions. Recycling oxidation reactions of Fe(TDCPP)IPG 5 led to a total turnover number of 201 and total cyclohexanol yield of 201%, which could not be attained with Fe(TDCPP)Cl in homogeneous solution (turnover = 96) due to the difficulty in recovering and reusing it.
Resumo:
70SiO(2)-30HfO(2) mol% planar waveguides, doped with Er3+ with concentrations ranging from 0.3 to 2 mol% were prepared by sol-gel route, using dip-coating deposition on vitreous-SiO2 substrates. Infrared-to-visible upconversion emission, upon excitation at 980 nm, has been observed for all the samples. The upconversion results in green, red and blue emissions. The investigation of the upconversion dynamic as a function of the Er3+ concentration and excitation power, show that processes such as excited state absorption and energy transfer upconversion are effective. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The adsorption isotherms of MCl(2) (M = Mn, Ni, Cu, Zn and Cd) and FeCl3 by silica gel chemically modified with benzimidazole molecules (= SI(CH2)(3)-NC7H5N) were studied in ethanol solution at 298 K. A column made of modified silica was used to adsorb and preconcentrate the above metal ions from ethanol solution. Elution was done with 0.1 M hydrochloric acid in an ethanol/water mixture having a mole fraction of water of 0.8. The material was applied in the preconcentration of metal ions from commercial ethanol normally used as engine fuel.
Resumo:
Silica gel, chemically modified with 2,5-dimercapto-1,3,4-thiadiazole [=Si(CH2)(3)-NC2HNS3], abbreviated as SiB, was used to adsorb metal ions from ethanol by both batch and column techniques. Elution of Cu(II) was done with a solvent mixture of acetone and hydrochloric acid (9:1 v/v). Zn(II), Cd(II), Ni(II), Pb(II), Co(II) and Fe(III) were eluted with 0.5 mol l(-1) HC1 in ethanol solution. The modified silica was applied in the preconcentration of metal ions from commercial ethanol, normally used as engine fuel. The method is suitable for quantifying these metals at low mu g l(-1) levels.
Resumo:
The ESR spectrum of CuCl2 adsorbed onto a silica gel surface chemically modified with the benzimidazole molecule showed that the surface complex has an octahedral symmetry with tetragonal distortion. The measured ESR parameters were g(parallel to) = 2.287, g(perpendicular to) = 2.062, A(parallel to) = 153 G and superhyperfine splitting A(N) = 15 G. The fit of the theoretical expressions to the experimental data was very reasonable. The effective spin orbit coupling constant for Cu2+ was reduced from its normal free ion value of lambda = -828 cm(-1) by as much as 30%. This reduction of lambda is normal in the solid state and in frozen solution complexes.
Resumo:
Silica gel with a specific surface area of 365 m(2).g(-1) and an average pore diameter of 60 Angstrom was chemically modified with 2-mercaptoimidazole. The degree of functionalization of the covalently attached molecule, (drop SiO)(3)(CH2)(3) - MI, where MI is the 2-mercaptoimidazole bound to the silica surface by a propyl group, was 0.58 mmolg.(-1). In individual metal adsorption experiments from aqueous solutions by the batch procedure, the affinity order was Hg(II)much greater than Cd-II > Cu-II approximate to Zn-II approximate to Pb-II > Mn-II at solution pHs between 4 and 7. Due to the high affinity by the sulfur atom, Hg-II is strongly bound to the functional groups. When solution containing a mixture of Hg-II, Cd-II, Cu-II, Zn-II, Pb-II, and Mn-II ions was passed through a column packed with the adsorbent, Hg-II was the only one whose adsorption and elution was not affected by the presence of other ions.
Resumo:
In this work, Eu(III) and Eu(II) doped gadolinium silicates has been obtained as compact tubes starting from spherical gadolinium hydroxide carbonate using the pores of silica matrix as support and its surface as reagent. Eu(III) doped gadolinium silicate with hexagonal phase shows an interesting visible shifted charge transfer band when compared to disilicate with orthorhombic phase that was also obtained. Eu(II) gadolinium silicate has been prepared using CO atmosphere presenting an intense blue emission. The divalent europium system shows a potential application as an UV-blue converter. The samples were characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD) and photoluminescence spectroscopy. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH < 2 with diluted HCl. The enrichment factors for Cu-II, Fe-III, Al-III and Co-II were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Mullite whiskers and anisotropic grains that were derived from erbia-doped aluminum hydroxide-silica gel were studied. Firing 3.0-mol%-erbia-doped isostatically pressed pellets at 1600 degrees C for 1.0-8.0 h resulted in a high surface concentration of mullite whiskers. Their c-axes were aligned preferentially along the pellet surface; the maximum length was 50 mu m, and the maximum aspect ratio was 23. The pellet surface was fully covered by mullite whiskers, and small anisotropic grains with a low aspect ratio were observed in the bulk. The voids that were observed in the fracture surfaces were covered fully by mullite whiskers. The large number of voids resulted in an apparent density of 1.60 g/cm(3) in the sintered pellets. The molar ratio of alumina to silica in the whiskers was in the range of 1.30-1.45 tan average value of 1.31), regardless of whether the alumina/silica powder compositions were mixed in a 3:2 or 2:1 ratio.
Resumo:
The structure of silica-polypropyleneglycol (PPG) nanocomposites with weak physical bonds between the organic (PPG) and inorganic (silica) phase, prepared by the sol-gel process, was investigated by small angle X-ray scattering (SAXS). These nanocomposite materials are transparent, flexible, have good chemical stability and exhibit high ionic conductivity when doped with lithium salt. Their structure was studied as a function of silica weight fraction x (0.06 less than or equal to x less than or equal to 0.29) and [O]/[Li] ratio (oxygens being of ether-type). The shape of the experimental SAXS curves agrees with that expected for scattering intensity produced by fractal aggregates sized between 30 and 90 Angstrom. This result suggests that the structure of the studied hybrids consists of silica fractal aggregates embedded in a matrix of PPG. The correlation length of the fractal aggregates decreases and the fractal dimension increases for increasing silica content. The variations in structural parameters for increasing Li+ doping indicate that lithium ions favor the growth of fractal silica aggregates without modifying their internal structure and promote the densification of the oligomeric PPG matrix.
Resumo:
This work presents the study of substrate surface effects on rhodamine B-containing silica films obtained from TEOS (tetraethylorthosilicate) acid hydrolysis. Soda-lime glass substrates were treated with basic solution under different reaction times and temperatures. Rhodamine B-containing silica films were deposited on pre-treated substrates by the spin-coating method. The substrate surface directly affects film morphology and homogeneity. The films are formed by packed silica spheres which protect the dye against acid-base attack. Luminescence spectra present shifts on the dye emission maximum as expected for different pH values on the substrate surface depending on the alkaline treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
About similar to 2.1 x 10(-3) Mol SiO2 cm(-3) and similar to 88%-volume liquid-phase silica wet gels were prepared from oxalic-acid-catalyzed tetraethoxysilane (TEOS) sonohydrolysis. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by thermogravimetry, small-angle X-ray scattering and nitrogen adsorption. Wet gels can be described as mass fractal structures with fractal dimension D similar to 1.94 and structural characteristic length zeta changing between similar to 3.3 to similar to 3.0 nm in the studied range of the catalyst concentration. A fraction of the porosity is apparently eliminated in the supercritical process. The values of the BET specific surface S-BET, the total pore volume V-p and the mean pore size l(p) of the aerogels were found to change almost randomly around the mean values S-BET = 874 m(2) g(-1), V-p = 0.961 cm(3) g(-1) and l(p) = 4.4 nm with catalyst concentration variation. These values were not substantially different from those from an equivalent HCl-catalyzed aerogel. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.