906 resultados para sigmoidal alveolar recruitment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this prospective two-phase experimental trial, 10 pigs were anaesthetized twice with isoflurane only. In the first phase, the individual minimum alveolar concentration (MAC) was determined and in the second phase the effects on withdrawal reflexes of increasing end-tidal isoflurane concentrations (from 1.6% to 2.8%) were assessed. Single, 10 and 60 repeated electrical stimulations were used to evoke withdrawal reflexes which were recorded and quantified by electromyography. Recruitment curves for reflex amplitude for increasing stimulation intensities and isoflurane concentrations were constructed. Isoflurane MAC was 1.9+/-0.3%. Reflexes evoked by repeated stimulation were suppressed at isoflurane concentrations significantly higher than those which suppressed complex movements during MAC determination (P=0.014 and P=0.006 for 10 and 60 repeated stimuli respectively). Isoflurane up to 2.8% was still not able to abolish reflex activity evoked by repeated stimulations in all pigs. Single stimulation reflexes were suppressed at significantly lower concentrations than repeated stimulation reflexes (P=0.008 and P=0.004 for 10 and 60 repeated stimuli, respectively). Reflex amplitude was significantly correlated with isoflurane concentration (P<0.001, r=-0.85) independent of the individual MAC. The findings indicate that the level at which isoflurane suppresses withdrawal reflexes is dependent on the stimulation paradigm (single vs. repeated electrical stimulation), and there is limited value in expressing reflex withdrawal suppression in terms of MAC as purposeful and reflex movements are independently affected by isoflurane in individual animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch is an intercellular signaling pathway related mainly to sprouting neo-angiogenesis. The objective of our study was to evaluate the angiogenic mechanisms involved in the vascular augmentation (sprouting/intussusception) after Notch inhibition within perfused vascular beds using the chick area vasculosa and MxCreNotch1(lox/lox) mice. In vivo monitoring combined with morphological investigations demonstrated that inhibition of Notch signaling within perfused vascular beds remarkably induced intussusceptive angiogenesis (IA) with resultant dense immature capillary plexuses. The latter were characterized by 40 % increase in vascular density, pericyte detachment, enhanced vessel permeability, as well as recruitment and extravasation of mononuclear cells into the incipient transluminal pillars (quintessence of IA). Combination of Notch inhibition with injection of bone marrow-derived mononuclear cells dramatically enhanced IA with 80 % increase in vascular density and pillar number augmentation by 420 %. Additionally, there was down-regulation of ephrinB2 mRNA levels consequent to Notch inhibition. Inhibition of ephrinB2 or EphB4 signaling induced some pericyte detachment and resulted in up-regulation of VEGFRs but with neither an angiogenic response nor recruitment of mononuclear cells. Notably, Tie-2 receptor was down-regulated, and the chemotactic factors SDF-1/CXCR4 were up-regulated only due to the Notch inhibition. Disruption of Notch signaling at the fronts of developing vessels generally results in massive sprouting. On the contrary, in the already existing vascular beds, down-regulation of Notch signaling triggered rapid augmentation of the vasculature predominantly by IA. Notch inhibition disturbed vessel stability and led to pericyte detachment followed by extravasation of mononuclear cells. The mononuclear cells contributed to formation of transluminal pillars with sustained IA resulting in a dense vascular plexus without concomitant vascular remodeling and maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most rodents and some other mammals, the removal of one lung results in compensatory growth associated with dramatic angiogenesis and complete restoration of lung capacity. One pivotal mechanism in neoalveolarization is neovascularization, because without angiogenesis new alveoli can not be formed. The aim of this study is to image and analyze three-dimensionally the different patterns of neovascularization seen following pneumonectomy in mice on a sub-micron-scale. C57/BL6 mice underwent a left-sided pneumonectomy. Lungs were harvested at various timepoints after pneumonectomy. Volume analysis by microCT revealed a striking increase of 143 percent in the cardiac lobe 14 days after pneumonectomy. Analysis of microvascular corrosion casting demonstrated spatially heterogenous vascular densitities which were in line with the perivascular and subpleural compensatory growth pattern observed in anti-PCNA-stained lung sections. Within these regions an expansion of the vascular plexus with increased pillar formations and sprouting angiogenesis, originating both from pre-existing bronchial and pulmonary vessels was observed. Also, type II pneumocytes and alveolar macrophages were seen to participate actively in alveolar neo-angiogenesis after pneumonectomy. 3D-visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy showed the appearance of double-layered vessels and bud-like alveolar baskets as have already been described in normal lung development. Scanning electron microscopy data of microvascular architecture also revealed a replication of perialveolar vessel networks through septum formation as already seen in developmental alveolarization. In addition, the appearance of pillar formations and duplications on alveolar entrance ring vessels in mature alveoli are indicative of vascular remodeling. These findings indicate that sprouting and intussusceptive angiogenesis are pivotal mechanisms in adult lung alveolarization after pneumonectomy. Various forms of developmental neoalveolarization may also be considered to contribute in compensatory lung regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To evaluate facial esthetics in patients with unilateral cleft lip and palate (UCLP) after alveolar bone grafting combined with rhinoplasty between 2 and 4 years of age. DESIGN Retrospective case-control study. SETTING The Department of Pediatric Surgery, Institute of Mother and Child, Warsaw, Poland. MATERIAL AND METHODS Photographs of full faces and cropped images of five nasolabial components: nasal deviation, nasal form, nasal profile, vermillion border, and inferior view were assessed by 5 professional and 14 layraters in 29 children (23 boys and 6 girls; mean age = 5.3 years, SD 0.5; Early-grafted group) and 30 children (20 boys and 10 girls; mean age = 5.5 years, SD 1.0; Non-grafted group) with complete unilateral cleft lip and palate repaired with a one-stage closure. The groups differed regarding the timing of alveolar bone grafting: in the Early-grafted group, alveolar bone grafting in combination with rhinoplasty (ABG-R) was performed between 2 and 4 years of age (mean age = 2.3 years; SD 0.6); in the Non-grafted group, the alveolar defect was grafted after 9 years of age. No primary nose correction was carried out in any group. To rate esthetics, a modified five-grade esthetic index of Asher-McDade was used, where grade 1 means the most esthetic and grade 5 - the least esthetic outcome. RESULTS Esthetics of full faces and of all nasolabial elements in the Early-grafted group was significantly better than in Non-grafted group. The scores in the Early-grafted group ranged from 2.30 to 2.66 points, whereas in the Non-grafted group ranged from 2.66 to 3.17 points. All intergroup differences were statistically significant (p < 0.05). CONCLUSIONS Three years post-operatively, early alveolar bone grafting combined with rhinoplasty is favorable for facial esthetics in children with UCLP, but a longer follow-up is needed to assess whether the improvement was permanent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Extended grafting procedures in atrophic ridges are invasive and time-consuming and increase cost and patient morbidity. Therefore, ridge-splitting techniques have been suggested to enlarge alveolar crests. The aim of this cohort study was to report techniques and radiographic outcomes of implants placed simultaneously with a piezoelectric alveolar ridge-splitting technique (RST). Peri-implant bone-level changes (ΔIBL) of implants placed with (study group, SG) or without RST (control group, CG) were compared. MATERIALS AND METHODS Two cohorts (seven patients in each) were matched regarding implant type, position, and number; superstructure type; age; and gender and received 17 implants each. Crestal implant bone level (IBL) was measured at surgery (T0), loading (T1), and 1 year (T2) and 2 years after loading (T3). For all implants, ΔIBL values were determined from radiographs. Differences in ΔIBL between SG and CG were analyzed statistically (Mann-Whitney U test). Bone width was assessed intraoperatively, and vertical bone mapping was performed at T0, T1, and T3. RESULTS After a mean observation period of 27.4 months after surgery, the implant survival rate was 100%. Mean ΔIBL was -1.68 ± 0.90 mm for SG and -1.04 ± 0.78 mm for CG (P = .022). Increased ΔIBL in SG versus CG occurred mainly until T2. Between T2 and T3, ΔIBL was limited (-0.11 ± 1.20 mm for SG and -0.05 ± 0.16 mm for CG; P = .546). Median bone width increased intraoperatively by 4.7 mm. CONCLUSIONS Within the limitations of this study, it can be suggested that RST is a well-functioning one-stage alternative to extended grafting procedures if the ridge shows adequate height. ΔIBL values indicated that implants with RST may fulfill accepted implant success criteria. However, during healing and the first year of loading, increased IBL alterations must be anticipated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To investigate the adequacy of potential sites for insertion of orthodontic mini-implants (OMIs) in the anterior alveolar region (delimited by the first premolars) through a systematic review of studies that used computed tomography (CT) or cone beam CT (CBCT) to assess anatomical hard tissue parameters, such as bone thickness, available space, and bone density. MATERIALS AND METHODS MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched to identify all relevant papers published between 1980 and September 2011. An extensive search strategy was performed that included the key words "computerized (computed) tomography" and "mini-implants." Information was extracted from the eligible articles for three anatomical areas: maxillary anterior buccal, maxillary anterior palatal, and mandibular anterior buccal. Quantitative data obtained for each anatomical variable under study were evaluated qualitatively with a scoring system. RESULTS Of the 790 articles identified by the search, 8 were eligible to be included in the study. The most favorable area for OMI insertion in the anterior maxilla (buccally and palatally) and mandible is between the canine and the first premolar. The best alternative area in the maxilla (buccally) and the mandible is between the lateral incisor and the canine, while in the maxillary palatal area it is between the central incisors or between the lateral incisor and the canine. CONCLUSIONS Although there is considerable heterogeneity among studies, there is a good level of agreement regarding the optimal site for OMI placement in the anterior region among investigations of anatomical hard tissue parameters based on CT or CBCT scans. In this context, the area between the lateral incisor and the first premolar is the most favorable. However, interroot distance seems to be a critical factor that should be evaluated carefully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Alveolar echinococcosis (AE) is caused by the larval stage (metacestode) of Echinococcus multilocularis. The domestic dog can act as a definitive host and harbor adult cestodes in its small intestine or become an aberrant intermediate host carrying larval stages that may cause severe lesions in the liver, lungs and other organs with clinical signs similar to AE in humans. CASE PRESENTATION: A case of canine AE, affecting the liver and prostate with development of multilocular hydatid paraprostatic cysts and possible lung involvement is described in an 8-year-old neutered male Labrador retriever dog.The dog presented with progressive weight loss, acute constipation, stranguria and a suspected soft tissue mass in the sublumbar region. Further evaluation included computed tomography of the thorax and abdomen, which revealed cystic changes in the prostate, a paraprostatic cyst, as well as lesions in the liver and lungs. Cytological examination of fine-needle aspirates of the liver, prostate and paraprostatic cyst revealed parasitic hyaline membranes typical of an Echinococcus infection and the presence of E. multilocularis-DNA was confirmed by PCR. The dog was treated with albendazole and debulking surgery was considered in case there was a good response to antiparasitic treatment. Constipation and stranguria resolved completely. Six months after the definitive diagnosis, the dog was euthanized due to treatment-resistant ascites and acute anorexia and lethargy. CONCLUSIONS: To the authors' knowledge, this is the first publication of an E. multilocularis infection in a dog causing prostatic and paraprostatic cysts. Although rare, E. multilocularis infection should be considered as an extended differential diagnosis in dogs presenting with prostatic and paraprostatic disease, especially in areas where E. multilocularis is endemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the last 10 years, the southern part of Belgium has been recognized as a low-risk area of endemicity for alveolar echinococcosis. This infection, caused by Echinococcus multilocularis, usually induces a severe liver condition and can sometimes spread to other organs. However, alveolar echinococcosis involving bones has been described only very rarely. Here, a fatal case of spondylodiscitis due to E. multilocularis contracted in southern Belgium is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar echinococcosis (AE) in humans is a parasitic disease characterized by severe damage to the liver and occasionally other organs. AE is caused by infection with the metacestode (larval) stage of the fox tapeworm Echinococcus multilocularis, usually infecting small rodents as natural intermediate hosts. Conventionally, human AE is chemotherapeutically treated with mebendazole or albendazole. There is, however still the need for improved chemotherapeutical options. Primary in vivo studies on drugs of interest are commonly performed in small laboratory animals such as mice and Mongolian jirds, and in most cases, a secondary infection model is used, whereby E. multilocularis metacestodes are directly injected into the peritoneal cavity or into the liver. Disadvantages of this methodological approach include risk of injury to organs during the inoculation and, most notably, a limitation in the macroscopic (visible) assessment of treatment efficacy. Thus, in order to monitor the efficacy of chemotherapeutical treatment, animals have to be euthanized and the parasite tissue dissected. In the present study, mice were infected with E. multilocularis metacestodes through the subcutaneous route and were then subjected to chemotherapy employing albendazole. Serological responses to infection were comparatively assessed in mice infected by the conventional intraperitoneal route. We demonstrate that the subcutaneous infection model for secondary AE facilitates the assessment of the progress of infection and drug treatment in the live animal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.