995 resultados para sensitive nerve conduction velocity
Resumo:
Present interventions to repair severed peripheral nerves provide slow and poor early axonal regeneration, which may cause unsatisfactory functional reinnervation. To improve early axonal regeneration in a 10 mm rat sciatic nerve gap model, we developed collagen nerve conduits loaded with the synergistically acting glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF). For controlling the concomitant GDNF and NGF release, the collagen tubes were cross-linked by a dehydro-thermal treatment (110 degrees C; 20 mbar; 5 days) prior to impregnating the tubes with GDNF and NGF and by coating drug-loaded tubes with layers of poly(lactide-co-glycolide). The conduits made of cross-linked collagen released low initial amounts of GDNF and NGF (2% of both during first 3 days) and enhanced significantly the early (2 weeks) nerve regeneration in terms of axonal outgrowth and Schwann cell migration in a 10 mm rat sciatic nerve gap model, as compared to the conduits made of non-cross-linked collagen releasing higher initial amounts of GDNF and NGF (12-16% within 3 days), or those releasing GDNF alone. The enhancement of early axonal regeneration using controlled co-delivery of multiple synergistic neurotrophic factors is an important requisite for eventually establishing functional connections with the target organ.
Resumo:
The production of extracellular soluble proteins was studied in serum-free aggregating cell cultures of fetal rat telencephalon labeled on culture day 7 with a mixture of radioactive amino acid precursors. Cultures treated continuously with epidermal growth factor (EGF; 20 ng/ml) showed a generally increased protein secretion and a particularly enhanced production of a few distinct extracellular proteins. The time lag of this response after an initial dose of EGF (25 ng/ml) on day 7 was 48 h. The total macromolecular radioactivity that accumulated within 96 h of labeling in the media of EGF-treated cultures was 175% of untreated controls, whereas no difference was found in the proportions of intracellular amino acid incorporation. Cultures which received a single dose of EGF (25 ng/ml) on day 1 showed still a greatly increased protein secretion on day 7. Prevention of extracellular protein accumulation by reducing the initial cell number and increasing the rate of media changes did not affect the EGF-induced stimulation of the two glial enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase. The results suggest that both the increased production of extracellular proteins and the enhanced development of glial enzymatic activities reflect the stimulated phenotypic expression of EGF-sensitive brain cells.
Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor
Resumo:
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Resumo:
The study goals present an overview of Hospitalizations for Ambulatory Care Sensitive Conditions (ACSC) in Guarulhos, SP, from 2008 to 2012. This is an ecological study based on secondary data obtained from the Brazilian Hospital Information System, and supported by the Praxical Theory of Intervention of Collective Health Nursing. Applied descriptive statistics for analysis. It was observed that Guarulhos shows an upward trend in hospitalizations by ACSC (20% increase), the most frequent causes of heart failure (11.8%), cerebrovascular disease (10.6%) and angina (9.7%), most frequently in the age group ≥ 65years old, for both sexes. The results are similar to other Brazilian studies, but their analysis should extrapolate the biological limits and the supply of healthcare resources, focusing on the social determinants of the health-disease process.
Resumo:
Objective To describe the profile of Hospitalizations by Amulatory Care Sensitive Conditions (HACSC), in the Municipality of Cotia, from 2008 to 2012. Method ecological, exploratory, longitudinal study with a quantitative approach. Data on HACSC, by age group and sex, were obtained from the Department of the Unified Health System. For data analysis descriptive statistics were used. Results During the period, there were 46,676 admissions, excluding deliveries, 7,753 (16.61%) by HACSC. The main causes were cerebrovascular diseases, 16.96%, heart failure, 15.50%, hypertension, 10.80% and infection of the kidney and urinary tract, 10.51%. Regarding gender, HACSC occurred predominantly in males. There was a greater number of HACSC at extreme age ranges, especially in the elderly. Conclusion Chronic diseases predominate among the leading causes of HACSC and there was no significant difference between sex.
Resumo:
The aim of this study is to analyze and understand the reasons for the occurrence of sensitive hospitalizations in accordance with users. Qualitative study conducted with users who were admitted to Pedreira General Hospital, in São Paulo. The data was collected through semi structured interviews and thereafter, transcribed and processed in the electronic program Alceste. When analyzing the content, the access was seized fundamentally as an empirical category, bringing up problems that later deserved, from the Brazilian Ministry of Health, a specific Program to improve the quality and access to primary care. The hierarchical and pyramidal organization shape from the health system in the city of São Paulo can be one of the important aspects for the access matter and established as an important restricting factor in the primary care role in reducing or even preventing the occurrence of these hospitalizations.
Resumo:
OBJECTIVE to describe hospital admissions for ambulatory care sensitive conditions in children under five years of age in the State of Paraná, Brazil by condition type, age group and health region. METHOD a temporal ecological study was conducted using data from the Unified Health System Hospital Information System for the period 2000 to 2011. Conditions were grouped in accordance with the list of ambulatory care sensitive conditions in Brazil. RESULTS there was an increase in the rate of admissions for ambulatory care sensitive conditions in all age groups in 50% of the health regions, with a marked increase in children under the age of one. Pneumonia, gastroenteritis and asthma were the main causes of admissions. There was an increase in the proportion of overall admissions accounted for by pneumonia and gastroenteritis. CONCLUSION the increase in admissions reveals the need for actions to improve access to primary healthcare and provide effective treatment of the main ambulatory care sensitive conditions in order to prevent hospital admissions among children.
Resumo:
The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.
Resumo:
The wound response prohormone jasmonic acid (JA) accumulates rapidly in tissues both proximal and distal to injury sites in plants. Using quantitative liquid chromatography-mass spectrometry after flash freezing of tissues, we found that JA accumulated within 30 s of injury in wounded Arabidopsis leaves (p = 3.5 e(-7)). JA augmentation distal to wounds was strongest in unwounded leaves with direct vascular connections to wounded leaves wherein JA levels increased significantly within 120 s of wounding (p = 0.00027). This gave conservative and statistically robust temporal boundaries for the average velocity of the long distance signal leading to distal JA accumulation in unwounded leaves of 3.4-4.5 cm min(-1). Like JA, transcripts of the JA synthesis gene LIPOXYGENASE2 (LOX2) and the jasmonate response gene JAZ10.3 also accumulated to higher levels in directly interconnected leaves than in indirectly connected leaves. JA accumulation in a lox2-1 mutant plant was initiated rapidly after wounding then slowed progressively compared with the wild type (WT). Despite this, JAZ10.3 expression in the two genotypes was similar. Free cyclopentenone jasmonate levels were similar in both resting WT and lox2-1. In contrast, bound cyclopentenone jasmonates (arabidopsides) were far lower in lox2-1 than in the WT. The major roles of LOX2 are to generate arabidopsides and the large levels of JA that accumulate proximal to the wound. LOX2 is not essential for some of the most rapid events elicited by wounding.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.
Resumo:
Introduction: To investigate differences in twitch and M-wave potentiation in the quadriceps femoris when electrical stimulation is applied over the quadriceps muscle belly versus the femoral nerve trunk. Methods: M-waves and mechanical twitches were evoked using direct quadriceps muscle and femoral nerve stimulation between 48 successive isometric maximal voluntary contractions (MVC) from 10 young, healthy subjects. Potentiation was investigated by analyzing the changes in M-wave amplitude recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles and in quadriceps peak twitch force. Results: Potentiation of twitch, VM M-wave, and VL M-wave were greater for femoral nerve than for direct quadriceps stimulation (P<0.05). Despite a 50% decrease in MVC force, the amplitude of the M-waves increased significantly during exercise. Conclusions: In addition to enhanced electrogenic Na(+) -K(+) pumping, other factors (such as synchronization in activation of muscle fibers and muscle architectural properties) might significantly influence the magnitude of M-wave enlargement. © 2013 Wiley Periodicals, Inc.
Resumo:
This study aimed to evaluate the influence of water velocity speed on the local distribution and taxocenosis structure of blackfly larvae. The larvae were collected from two adjacent streams located in the municipality of Angra dos Reis (RJ): Caputera River and one of its tributaries. Riffle litter patches were sampled randomly using a 30 x 30 cm quadrat. Four blackfly species were found: Simulium incrustatum s. l. Lutz, 1910; Simulium (Inaequalium) sp. ; Simulium pertinax s. l. Kollar, 1832 and Simulium subpallidum s. l. Lutz, 1909. Among these species, Simulium pertinax s. l. was clearly associated with higher water current speeds, while Simulium subpallidum s. l. showed association with lower water velocities, and Simulium (Inaequalium) sp. had a relatively constant distribution along the water current gradient.