880 resultados para self paced reading task
Resumo:
Mood state facilitates recall of affectively congruent memories (i.e., mood-congruent recall). Mood state may also promote motivation to alleviate a negative affective state, leading to retrieval of affectively incongruent memories (i.e., mood incongruent recall). The present study demonstrates that the focus of self-knowledge influences the occurrence of both mood-congruent recall and mood-incongruent recall. Three experiments found that mood-congruent recall occurred when participants recalled their experiences from a self-aspect that was related to the elicitor of moods, whereas mood-incongruent recall occurred when they recalled their experiences from a self-aspect that was unrelated to the elicitor of moods. These results suggest that the nature of the self-aspect from which persons recall their experiences determines whether mood-congruent or mood-incongruent recall occurs.
Resumo:
In this study of the structure of self-knowledge, we examined priming effects for the recall of personal episodes in order to investigate whether abstract trait knowledge and personal episodes are independent mental representations. We found that accessing similar abstract representations of traits facilitated a faster recall of related personal episodes than did accessing irrelevant abstract representations of traits (Experiments 1 and 2), reading a nonword prime (Experiments 2 and 3), accessing knowledge of one's mother (Experiment 3), or accessing semantic knowledge (Experiment 3). Contrary to previous findings, which indicated that abstract trait knowledge is represented independently of related personal episodes (e.g., Klein & Loftus, 1993, our results suggest that abstract trait knowledge is associated with personal episodes, and therefore that semantic self-knowledge is associated with episodic self-knowledge in long-term self-knowledge.
Resumo:
Low self-esteem is a common, disabling, and distressing problem that has been shown to be involved in the etiology and maintenance of range of Axis I disorders. Hence, it is a priority to develop effective treatments for low self-esteem. A cognitive-behavioral conceptualization of low self-esteem has been proposed and a cognitive-behavioral treatment (CBT) program described (Fennell, 1997, 1999). As yet there has been no systematic evaluation of this treatment with routine clinical populations. The current case report describes the assessment, formulation, and treatment of a patient with low self-esteem, depression, and anxiety symptoms. At the end of treatment (12 sessions over 6 months), and at 1-year follow-up, the treatment showed large effect sizes on measures of depression, anxiety, and self-esteem. The patient no longer met diagnostic criteria for any psychiatric disorder, and showed reliable and clinically significant change on all measures. As far as we are aware, there are no other published case studies of CBT for low self-esteem that report pre- and posttreatment evaluations, or follow-up data. Hence, this case provides an initial contribution to the evidence base for the efficacy of CBT for low self-esteem. However, further research is needed to confirm the efficacy of CBT for low self-esteem and to compare its efficacy and effectiveness to alternative treatments, including diagnosis-specific CBT protocols.
Resumo:
A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2−NMI-S2)Fe2(CO)6] (3, py = pyridine(ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(CO) and ν(CO)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3•− generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the chargeseparated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3•− is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMIS2−Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR spectroscopy is a powerful tool to investigate photoinduced electron transfer in potential dihydrogen-producing catalytic complexes, and that way to optimize their performance by rational approaches.
Resumo:
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Resumo:
Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task specifically in the case of implanted devices such as pacemakers, extending the lifetime of sensor nodes in WBANs is one of the greatest challenges. To achieve this goal, WBAN systems employ low-power communication transceivers and low duty cycle Medium Access Control (MAC) protocols. Although, currently used MAC protocols are able to reduce the energy consumption of devices for transmission and reception, yet they are still unable to offer an ultimate energy self-sustaining solution for low-power MAC protocols. This paper proposes to utilize energy harvesting technologies in low-power MAC protocols. This novel approach can further reduce energy consumption of devices in WBAN systems.
Resumo:
The enzymatic cleavage of a peptide amphiphile (PA) is investigated. The self-assembly of the cleaved products is distinct from that of the PA substrate. The PA C16-KKFFVLK is cleaved by α-chymotrypsin at two sites leading to products C16-KKF with FVLK and C16-KKFF with VLK. The PA C16-KKFFVLK forms nanotubes and helical ribbons at room temperature. Both PAs C16-KKF and C16-KKFF corresponding to cleavage products instead self-assemble into 5-6 nm diameter spherical micelles, while peptides FVLK and VLK do not adopt well-defined aggregate structures. The secondary structures of the PAs and peptides are examined by FTIR and circular dichroism spectroscopy and X-ray diffraction. Only C16-KKFFVLK shows substantial β-sheet secondary structure, consistent with its self-assembly into extended aggregates, based on PA layers containing hydrogen-bonded peptide headgroups. This PA also exhibits a thermoreversible transition to twisted tapes on heating.
Resumo:
Greater self-complexity has been suggested as a protective factor for people under stress (Linville, 1985). Two different measures have been proposed to assess individual self-complexity: Attneave’s H statistic (1959) and a composite index of two components of self-complexity (SC; Rafaeli-Mor et al., 1999). Using mood-incongruent recall, i.e., recalling positive events while in negative mood, the present study compared validity of the two measures through reanalysis of Sakaki’s (2004) data. Results indicated that H statistic did not predict performance of mood-incongruent recall. In contrast, greater SC was associated with better mood-incongruent recall even when the effect of H statistic was controlled.
Resumo:
Some people recall more positive memories in negative moods than in neutral moods, which is called mood-incongruent effect. Although previous research suggested that structure of self-knowledge influences mood-incongruent effect (Sakaki, 2004), it is possible that motivation for mood-regulation mediates relation between structure of self-knowledge and mood-incongruent effect. The present study aimed at exploring this possibility by using self-complexity. In Study 1, participants with higher self-complexity, whose self-knowledge has more self-aspects with a higher level of differentiation, recalled more positive memories in negative moods (compared to neutral moods) than participants with lower self-complexity, whose self-knowledge has a fewer self-aspects with larger overlap. Study 1 also revealed that these effects hold even when the motivation for mood-regulation was partialed out. Study 2 examined mood-incongruent effect under positive moods, in which participants are unlikely motivated to alter their moods, and it was found that participants with higher self-complexity recalled more negative memories in positive moods (compared to neutral moods) than participants with lower self-complexity.
Resumo:
Individuals with schizophrenia, particularly those with passivity symptoms, may not feel in control of their actions, believing them to be controlled by external agents. Cognitive operations that contribute to these symptoms may include abnormal processing in agency as well as body representations that deal with body schema and body image. However, these operations in schizophrenia are not fully understood, and the questions of general versus specific deficits in individuals with different symptom profiles remain unanswered. Using the projected-hand illusion (a digital video version of the rubber-hand illusion) with synchronous and asynchronous stroking (500 ms delay), and a hand laterality judgment task, we assessed sense of agency, body image, and body schema in 53 people with clinically stable schizophrenia (with a current, past, and no history of passivity symptoms) and 48 healthy controls. The results revealed a stable trait in schizophrenia with no difference between clinical subgroups (sense of agency) and some quantitative (specific) differences depending on the passivity symptom profile (body image and body schema). Specifically, a reduced sense of self-agency was a common feature of all clinical subgroups. However, subgroup comparisons showed that individuals with passivity symptoms (both current and past) had significantly greater deficits on tasks assessing body image and body schema, relative to the other groups. In addition, patients with current passivity symptoms failed to demonstrate the normal reduction in body illusion typically seen with a 500 ms delay in visual feedback (asynchronous condition), suggesting internal timing problems. Altogether, the results underscore self-abnormalities in schizophrenia, provide evidence for both trait abnormalities and state changes specific to passivity symptoms, and point to a role for internal timing deficits as a mechanistic explanation for external cues becoming a possible source of self-body input.
Resumo:
With an aging global population, the number of people living with a chronic illness is expected to increase significantly by 2050. If left unmanaged, chronic care leads to serious health complications, resulting in poor patient quality of life and a costly time bomb for care providers. If effectively managed, patients with chronic care tend to live a richer and more healthy life, resulting in a less costly total care solution. This chapter considers literature from the areas of technology acceptance and care self-management, which aims to alleviate symptoms and/or reason for non-acceptance of care, and thus minimise the risk of long-term complications, which in turn reduces the chance of spiralling health expenditure. By bringing together these areas, the chapter highlights areas where self-management is failing so that changes can be made in care in advance of health deterioration.
Resumo:
Sophisticated, intentional decision-making is a hallmark of mature, self-aware behaviour. Although neural, psychological, interpersonal, and socioeconomic elements that contribute to such adaptive, foresighted behaviour mature and/or change throughout the life-span, here we concentrate on relevant maturational processes that take place during adolescence, a period of disproportionate developmental opportunity and risk. A brief, eclectic overview is presented of recent evidence, new challenges, and current thinking on the fundamental mechanisms that mature throughout adolescence to support adaptive, self-controlled decision-making. This is followed by a proposal for the putative contribution of frontostriatal mechanisms to the moment-to-moment assembly of evaluative heuristics that mediate increased decision-making sophistication, promoting the maturation of self-regulated behaviour through adolescence and young adulthood.
Resumo:
Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.