957 resultados para segment QT
Resumo:
In the title compound, C23H26O3, the three six-membered rings of the xanthene system are non-planar, having total puckering amplitudes, QT, of 0.443 (2), 0.202 (2) and 0.449 (2) Å. The central ring adopts a boat conformation and the outer rings adopt sofa conformations. The crystal structure is stabilized by van der Waals interactions.
Resumo:
Cellular materials that are often observed in biological systems exhibit excellent mechanical properties at remarkably low densities. Luffa sponge is one of such materials with a complex interconnecting porous structure. In this paper, we studied the relationship between its structural and mechanical properties at different levels of its hierarchical organization from a single fiber to a segment of whole sponge. The tensile mechanical behaviors of three single fibers were examined by an Instron testing machine and the ultrastructure of a fractured single fiber was observed in a scanning electronic microscope. Moreover, the compressive mechanical behaviors of the foam-like blocks from different locations of the sponge were examined. The difference of the compressive stress-strain responses of four sets of segmental samples were also compared. The result shows that the single fiber is a porous composite material mainly consisting of cellulose fibrils and lignin/hemicellulose matrix, and its Young's modulus and strength are comparable to wood. The mechanical behavior of the block samples from the hoop wall is superior to that from the core part. Furthermore, it shows that the influence of the inner surface on the mechanical property of the segmental sample is stronger than that of the core part; in particular, the former's Young's modulus, strength and strain energy absorbed are about 1.6 times higher. The present work can improve our understanding of the structure-function relationship of the natural material, which may inspire fabrication of new biomimetic foams with desirable mechanical efficiency for further applications in anti-crushing devices and super-light sandwich panels.
Resumo:
Background: Coronary tortuosity (CT) is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. Methods: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA) and coronary tortuosity number (CTN) on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. Results: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. Conclusions: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.
Resumo:
Introduction: Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced MRI has been shown to be a useful modality to image activated macrophages in vivo, which are principally responsible for plaque inflammation. This study determined the optimum imaging time-window to detect maximal signal change post-USPIO infusion using T1-weighted (T1w), T2*- weighted (T2*w) and quantitative T2*(qT 2*) imaging. Methods: Six patients with an asymptomatic carotid stenosis underwent high resolution T1w, T2*w and qT2*MR imaging of their carotid arteries at 1.5 T. Imaging was performed before and at 24, 36, 48, 72 and 96 h after USPIO (Sinerem™, Guerbet, France) infusion. Each slice showing atherosclerotic plaque was manually segmented into quadrants and signal changes in each quadrant were fitted to an exponential power function to model the optimum time for post-infusion imaging. Results: The power function determining the mean time to convergence for all patients was 46, 41 and 39 h for the T1w, T 2*w and qT2*sequences, respectively. When modelling each patient individually, 90% of the maximum signal intensity change was observed at 36 h for three, four and six patients on T1w, T 2*w and qT2*, respectively. The rates of signal change decrease after this period but signal change was still evident up to 96 h. Conclusion: This study showed that a suitable imaging window for T 1w, T2*w and qT2*signal changes post-USPIO infusion was between 36 and 48 h. Logistically, this would be convenient in bringing patients back for one post-contrast MRI, but validation is required in a larger cohort of patients.
Resumo:
The peptide t-butyloxycarbonyl-α-aminoisobutyryl-L-prolyl-L-prolyl-N-methylamide has been shown to adopt an extended structure in the solid state. The Pro-Pro segment occurs in the poly-proline II conformation. On dissolution of single crystals at not, vert, similar 233°K, a single species corresponding to the all Image peptide backbone is observed by 270 MHz 1H NMR. On warming, Image to Image isomerization about the Pro-Pro bond is facilitated. Both Image (ψ not, vert, similar−50°) and Image (ψ not, vert, similar 130°) rotamers about the Pro3 Cα---CO bond are detectable in the Pro-Pro Image conformer, at low temperature. These observations demonstrate unambiguously the large differences in the solid state and solution conformations of a Pro-Pro sequence.
Resumo:
Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.
Resumo:
A variety of data structures such as inverted file, multi-lists, quad tree, k-d tree, range tree, polygon tree, quintary tree, multidimensional tries, segment tree, doubly chained tree, the grid file, d-fold tree. super B-tree, Multiple Attribute Tree (MAT), etc. have been studied for multidimensional searching and related problems. Physical data base organization, which is an important application of multidimensional searching, is traditionally and mostly handled by employing inverted file. This study proposes MAT data structure for bibliographic file systems, by illustrating the superiority of MAT data structure over inverted file. Both the methods are compared in terms of preprocessing, storage and query costs. Worst-case complexity analysis of both the methods, for a partial match query, is carried out in two cases: (a) when directory resides in main memory, (b) when directory resides in secondary memory. In both cases, MAT data structure is shown to be more efficient than the inverted file method. Arguments are given to illustrate the superiority of MAT data structure in an average case also. An efficient adaptation of MAT data structure, that exploits the special features of MAT structure and bibliographic files, is proposed for bibliographic file systems. In this adaptation, suitable techniques for fixing and ranking of the attributes for MAT data structure are proposed. Conclusions and proposals for future research are presented.
Resumo:
A new technique has been devised to achieve a steady-state polarisation of a stationary electrode with a helical shaft rotating coaxial to it. A simplified theory for the convective hydrodynamics prevalent under these conditions has been formulated. Experimental data are presented to verify the steady-state character of the current-potential curves and the predicted dependence of the limiting current on the rotation speed of the rotor, the bulk concentration of the depolariser and the viscosity of the solution. Promising features of the multiple-segment electrodes concentric to a central disc electrode are pointed out.
Resumo:
The common focus of the studies brought together in this work is the prosodic segmentation of spontaneous speech. The theoretically most central aspect is the introduction and further development of the IJ-model of intonational chunking. The study consists of a general introduction and five detailed studies that approach prosodic chunking from different perspectives. The data consist of recordings of face-to-face interaction in several spoken varieties of Finnish and Finland Swedish; the methodology is usage-based and qualitative. The term “speech prosody” refers primarily to the melodic and rhythmic characteristics of speech. Both speaking and understanding speech require the ability to segment the flow of speech into suitably sized prosodic chunks. In order to be usage-based, a study of spontaneous speech consequently needs to be based on material that is segmented into prosodic chunks of various sizes. The segmentation is seen to form a hierarchy of chunking. The prosodic models that have so far been developed and employed in Finland have been based on sentences read aloud, which has made it difficult to apply these models in the analysis of spontaneous speech. The prosodic segmentation of spontaneous speech has not previously been studied in detail in Finland. This research focuses mainly on the following three questions: (1) What are the factors that need to be considered when developing a model of prosodic segmentation of speech, so that the model can be employed regardless of the language or dialect under analysis? (2) What are the characteristics of a prosodic chunk, and what are the similarities in the ways chunks of different languages and varieties manifest themselves that will make it possible to analyze different data according to the same criteria? (3) How does the IJ-model of intonational chunking introduced as a solution to question (1) function in practice in the study of different varieties of Finnish and Finland Swedish? The boundaries of the prosodic chunks were manually marked in the material according to context-specific acoustic and auditory criteria. On the basis of the data analyzed, the IJ-model was further elaborated and implemented, thus allowing comparisons between different language varieties. On the basis of the empirical comparisons, a prosodic typology is presented for the dialects of Swedish in Finland. The general contention is that the principles of the IJ-model can readily be used as a methodological tool for prosodic analysis irrespective of language varieties.
Resumo:
A fast iterative scheme based on the Newton method is described for finding the reciprocal of a finite segment p-adic numbers (Hensel code). The rate of generation of the reciprocal digits per step can be made quadratic or higher order by a proper choice of the starting value and the iterating function. The extension of this method to find the inverse transform of the Hensel code of a rational polynomial over a finite field is also indicated.
Resumo:
Underground tunnels are vulnerable to terrorist attacks which can cause collapse of the tunnel structures or at least extensive damage, requiring lengthy repairs. This paper treats the blast impact on a reinforced concrete segmental tunnel buried in soil under a number of parametric conditions; soil properties, soil cover, distance of explosive from the tunnel centreline and explosive weight and analyses the possible failure patterns. A fully coupled Fluid Structure Interaction (FSI) technique incorporating the Arbitrary Lagrangian-Eulerian (ALE) method is used in this study. Results indicate that the tunnel in saturated soil is more vulnerable to severe damage than that buried in either partially saturated soil or dry soil. The tunnel is also more vulnerable to surface explosions which occur directly above the centre of the tunnel than those that occur at any equivalent distances in the ground away from the tunnel centre. The research findings provide useful information on modeling, analysis, overall tunnel response and failure patterns of segmented tunnels subjected to blast loads. This information will guide future development and application of research in this field.
Resumo:
The caseins (αs1, αs2, β, and κ) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1–44) of bovine κ-casein, the protein which maintains the micellar structure of the caseins. κ-Casein (1–44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro8 to Arg34. This is the first report which demonstrates extensive secondary structure within the casein class of proteins.
Resumo:
a,a-Trehalose induced a rapid blackening of the terminal 2.5-centimeter region of excised Cuscuta relexa Roxb. vine. The incorporation of radioactivity from [I'C]glucose into alkali-insoluble fraction of shoot tip was markedly inhibited by 12 hours of trehalose feeding to an excised vine. This inhibition was confied to the apical segment of the vine in which cell elongation occurred. The rate of blackening of shoot tip explants was hastened by the addition of gibberellic acid A3, which promoted elongation growth of isolated Cuscuta shoot tips. The symptom of trehalose toxicity was duplicated by 2-deoxygucose, which has been shown to be a potent inhibitor of ceD wall synthesis in yeast. The observations suggest that trehalose interferes with the synthesis of ceDl wail polysaccharides, the chief component of which was presumed to be cellulose.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.