992 resultados para secondary metabolism anthocyanin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The liver plays an important role in glucose and lactate metabolism. Major hepatectomy may therefore be suspected to cause alterations of glucose and lactate homeostasis. METHODS: Thirteen subjects were studied: six patients after major hepatectomy and seven healthy subjects who had fasted overnight. Glucose turnover was measured with 6,6(2)H glucose. Lactate metabolism was assessed using two complementary approaches: 13C-glucose synthesis and 13CO2 production from an exogenous 13C-labeled lactate load infused over 15 minutes were measured, then the plasma lactate concentrations observed over 185 minutes after lactate load were fitted using a biexponential model to calculate lactate clearance, endogenous production, and half-lives. RESULTS: Three to five liver segments were excised. Compared to healthy controls, the following results were observed in the patients: 1) normal endogenous glucose production; 2) unchanged 13C-lactate oxidation and transformation into glucose; 3) similar basal plasma lactate concentration, lactate clearance, and lactate endogenous production; 4) decreased plasma lactate half-life 1 and increased half-life 2. CONCLUSIONS: Glucose and lactate metabolism are well maintained in patients after major hepatectomy, demonstrating a large liver functional reserve. Reduction in the size of normal liver parenchyma does not lead to hyperlactatemia. The use of a pharmacokinetic model, however, allows the detection of subtle alterations of lactate metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine whether glucocorticoids alter autoregulation of glucose production and fructose metabolism. Two protocols with either dexamethasone (DEX) or placebo (Placebo) were performed in six healthy men during hourly ingestion of[13C]fructose (1.33 mmol.kg-1.h-1) for 3 h. In both protocols, endogenous glucose production (EGP) increased by 8 (Placebo) and 7% (DEX) after fructose, whereas gluconeogenesis from fructose represented 82 (Placebo) and 72% (DEX) of EGP. Fructose oxidation measured from breath 13CO2 was similar in both protocols [9.3 +/- 0.7 (Placebo) and 9.6 +/- 0.5 mumol.kg-1.min-1 (DEX)]. Nonoxidative carbohydrate disposal, calculated as fructose administration rate minus net carbohydrate oxidation rate after fructose ingestion measured by indirect calorimetry, was also similar in both protocols [5.8 +/- 0.8 (Placebo) and 5.9 +/- 2.0 mumol.kg-1.min-1 (DEX)]. We concluded that dexamethasone 1) does not alter the autoregulatory process that prevents a fructose-induced increase in gluconeogenesis from increasing total glucose production and 2) does not affect oxidative and nonoxidative pathways of fructose. This indicates that the insulin-regulated enzymes involved in these pathways are not affected in a major way by dexamethasone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During episodes of trauma carnitine-free total parenteral nutrition (TPN) may result in a reduction of the total body carnitine pool, leading to a diminished rate of fat oxidation. Sixteen patients undergoing esophagectomy were divided randomly in two equal isonitrogenous groups (0.2 g/kg.day). Both received TPN (35 kcal/kg.day; equally provided as long-chain triglycerides and glucose) over 11 days without (group A) and with (group B) L-carnitine supplementation (12 mg/kg.day = 75 mumol/kg.day). Compared with healthy controls, the total body carnitine pool prior to the operation was significantly reduced in both groups, suggesting a state of semistarvation and muscle wasting. In group A the plasma levels of total carnitine and its subfractions (free carnitine, short- and long-chain acylcarnitine) remained stable during the study whereas in group B the total plasma carnitine concentration rose mainly due to an increase in free carnitine. In group A the cumulative urinary carnitine losses were 11.5 +/- 2.6 mmol (= 15.5 +/- 3.1% of the estimated total body carnitine pool). In group B 3.1 +/- 1.9 mmol (= 11.1 +/- 7.6%) of the infused carnitine was retained in the immediate postoperative phase until day 6, but this amount was completely lost at completion of the study period. No significant differences in the respiratory quotient or in the plasma levels of triglycerides, free fatty acids, and ketone bodies were observed, between or within the groups, before the operation and after 11 days of treatment. It is concluded that the usefulness of carnitine supplementation during postoperative TPN was not apparent in the present patient material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Following the complete sequencing of the human genome, the field of nutrition has begun utilizing this vast quantity of information to comprehensively explore the interactions between diet and genes. This approach, coined nutrigenomics, aims to determine the influence of common dietary ingredients on the genome, and attempts to relate the resulting different phenotypes to differences in the cellular and/or genetic response of the biological system. However, complementary to defining the biological outcomes of dietary ingredients, we must also understand the influence of the multiple factors (such as the microbiota, bile, and function of transporters) that may contribute to the bioavailability, and ultimately bioefficacy, of these ingredients. The gastrointestinal tract (GIT) is the body's foremost tissue boundary, interacting with nutrients, exogenous compounds and microbiota, and whose condition is influenced by the complex interplay between these environmental factors and genetic elements. In order to understand GIT nutrient-gene interactions, our goal was to comprehensively elucidate the region-specific gene expression underlying intestinal functions. We found important regional differences in the expression of members of the ATP-binding cassette family of transporters in the mouse intestine, suggesting that absorption of dietary compounds may vary along the GIT. Furthermore, the influence of the microbiota on host gene expression indicated that this luminal factor predominantly influences immune function and water transport throughout the GIT; however, the identification of region-specific functions suggest distinct host-bacterial interactions along the GIT. Thus, these findings reinforce that to understand nutrient bioavailability and GIT function, one must consider the physiologically distinct regions of the gut. Nutritional molecules absorbed by the enterocytes of the GIT enter circulation and will be selectively absorbed and metabolised by tissues throughout the body; however, their bioefficacy in the body will depend on the unique and shared molecular mechanisms of the various tissues. Using a nutrigenomic approach, the biological responses of the liver and hippocampus of mice fed different long chain-polyunsaturated fatty acids diets revealed tissue-specific responses. Furthermore, we identified stearoyl-CoA desaturase as a hepatic target for arachidonic acid, suggesting a potentially novel molecular mechanism that may protect against diet-induced obesity. In summary, this work begins to unveil the fundamentally important role that nutrigenomics will play in unravelling the molecular mechanisms, and those exogenous factors capable of influencing these mechanisms, that regulate the bioefficacy of nutritional molecules. RÉSUMÉ Suite au séquençage complet du génome humain, le domaine de la nutrition a commencé à utiliser cette vaste quantité d'information pour explorer de manière globale les interactions entre la nourriture et les gènes. Cette approche, appelée « nutrigenomics », a pour but de déterminer l'influence d'ingrédients couramment utilisés dans l'alimentation sur le génome, et d'essayer de relier ces différents phénotypes, ainsi révélés, à des différences de réponses cellulaires et/ou génétiques. Cependant, en plus de définir les effets biologiques d'ingrédients alimentaires, il est important de comprendre l'influence des multiples facteurs (telle que la microflore, la bile et la fonction des transporteurs) pouvant contribuer à la bio- disponibilité et par conséquent à l'efficacité de ces ingrédients. Le tractus gastro-intestinal (TGI), qui est la première barrière vers les tissus, interagit avec les nutriments, les composés exogènes et la microflore. La fonction de cet organe est influencée par les interactions complexes entre les facteurs environnementaux et les éléments génétiques. Dans le but de comprendre les interactions entre les nutriments et les gènes au niveau du TGI, notre objectif a été de décrire de manière globale l'expression génique spécifique de chaque région de l'intestin définissant leurs fonctions. Nous avons trouvé d'importantes différences régionales dans l'expression des transporteurs de la famille des « ATP-binding cassette transporter » dans l'intestin de souris, suggérant que l'absorption des composés alimentaires puisse varier le long de l'intestin. De plus, l'étude des effets de la microflore sur l'expression des gènes hôtes a indiqué que ce facteur de la lumière intestinale influence surtout la fonction immunitaire et le transport de l'eau à travers l'intestin. Cependant, l'identification des fonctions spécifiques de chaque région suggère des interactions distinctes entre l'hôte et les bactéries le long de l'intestin. Ainsi, ces résultats renforcent l'idée que la compréhension de la bio-disponibilité des nutriments, et par conséquent la fonction du TGI, doit prendre en considération les différences régionales. Les molécules nutritionnelles transportées par les entérocytes jusqu'à la circulation sanguine, sont ensuite sélectivement absorbées et métabolisées par les différents tissus de l'organisme. Cependant, leur efficacité biologique dépendra du mécanisme commun ou spécifique de chaque tissu. En utilisant une approche « nutriogenomics », nous avons pu mettre en évidence les réponses biologiques spécifiques du foie et de l'hippocampe de souris nourris avec des régimes supplémentés avec différents acides gras poly-insaturés à chaîne longue. De plus, nous avons identifié la stearoyl-CoA desaturase comme une cible hépatique pour l'acide arachidonique, suggérant un nouveau mécanisme moléculaire pouvant potentiellement protéger contre le développement de l'obésité. En résumé, ce travail a permis de dévoiler le rôle fondamental qu'une approche telle que la « nutrigenomics » peut jouer dans le décryptage des mécanismes moléculaires et de leur régulation par des facteurs exogènes, qui ensemble vont contrôler l'efficacité biologique des nutriments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this work is to investigate the characteristics of eyes failing to maintain visual acuity (VA) receiving variable dosing ranibizumab for neovascular age-related macular degeneration (nAMD) after three initial loading doses. METHODS: A consecutive series of patients with nAMD, who, after three loading doses of intravitreal ranibizumab (0.5 mg each), were re-treated for fluid seen on optical coherence tomography. After exclusion of eyes with previous treatment, follow-up less than 12 months, or missed visits, 99 patients were included in the analysis. The influence of baseline characteristics, initial VA response, and central retinal thickness (CRT) fluctuations on the VA stability from month 3 to month 24 were analyzed using subgroups and multiple regression analyses. RESULTS: Mean follow-up duration was 21.3 months (range 12-40 months, 32 patients followed-up for ≥24 months). Secondary loss of VA (loss of five letters or more) after month 3 was seen in 30 patients (mean VA improvement from baseline +5.8 letters at month 3, mean loss from baseline -5.3 letters at month 12 and -9.7 at final visit up to month 24), while 69 patients maintained vision (mean gain +8.9 letters at month 3, +10.4 letters at month 12, and +12.8 letters at final visit up to month 24). Secondary loss of VA was associated with the presence of pigment epithelial detachment (PED) at baseline (p 0.01), but not with baseline fibrosis/atrophy/hemorrhage, CRT fluctuations, or initial VA response. Chart analysis revealed additional individual explanations for the secondary loss of VA, including retinal pigment epithelial tears, progressive fibrosis, and atrophy. CONCLUSIONS: Tissue damage due to degeneration of PED, retinal pigment epithelial tears, progressive fibrosis, progressive atrophy, or massive hemorrhage, appears to be relevant in causing secondary loss of VA despite vascular endothelial growth factor suppression. PED at baseline may represent a risk factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: To evaluate the role of adipose tissue in the metabolic stress response of critically ill patients, the release of glycerol and lactate by subcutaneous adipose tissue was assessed by means of microdialysis in patients with sepsis or circulatory failure and in healthy subjects. Patients with sepsis had lower plasma free fatty acid concentrations and non-significant elevations of plasma glycerol concentrations, but higher adipose-systemic glycerol concentrations gradients than healthy subjects or patients with circulatory failure, indicating a stimulation of subcutaneous adipose lipolysis. They also had a higher lipid oxidation. Lipid metabolism (adipose-systemic glycerol gradients, lipid oxidation) was not altered in patients with circulatory failure. These observations highlight major differences in lipolysis and lipid utilization between patients with sepsis and circulatory failure. Hyperlactataemia was present in both groups of patients, but the adipose-systemic lactate concentration gradient was not increased, indicating that lactate production by adipose tissue was not involved. This speaks against a role of adipose tissue in the development of hyperlactataemia in critically ill patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND In the last decades the presence of social inequalities in diabetes care has been observed in multiple countries, including Spain. These inequalities have been at least partially attributed to differences in diabetes self-management behaviours. Communication problems during medical consultations occur more frequently to patients with a lower educational level. The purpose of this cluster randomized trial is to determine whether an intervention implemented in a General Surgery, based in improving patient-provider communication, results in a better diabetes self-management in patients with lower educational level. A secondary objective is to assess whether telephone reinforcement enhances the effect of such intervention. We report the design and implementation of this on-going study. METHODS/DESIGN The study is being conducted in a General Practice located in a deprived neighbourhood of Granada, Spain. Diabetic patients 18 years old or older with a low educational level and inadequate glycaemic control (HbA1c > 7%) were recruited. General Practitioners (GPs) were randomised to three groups: intervention A, intervention B and control group. GPs allocated to intervention groups A and B received training in communication skills and are providing graphic feedback about glycosylated haemoglobin levels. Patients whose GPs were allocated to group B are additionally receiving telephone reinforcement whereas patients from the control group are receiving usual care. The described interventions are being conducted during 7 consecutive medical visits which are scheduled every three months. The main outcome measure will be HbA1c; blood pressure, lipidemia, body mass index and waist circumference will be considered as secondary outcome measures. Statistical analysis to evaluate the effectiveness of the interventions will include multilevel regression analysis with three hierarchical levels: medical visit level, patient level and GP level. DISCUSSION The results of this study will provide new knowledge about possible strategies to promote a better diabetes self-management in a particularly vulnerable group. If effective, this low cost intervention will have the potential to be easily incorporated into routine clinical practice, contributing to decrease health inequalities in diabetic patients. TRIAL REGISTRATION Clinical Trials U.S. National Institutes of Health, NCT01849731.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ophthalmoplegia associated with dural carotid-cavernous sinus fistula typically involves the third, fourth, and sixth cranial nerves. Occasionally, isolated palsy of the oculomotor or abducens nerve is noted. We report a patient with bilateral dural carotid-cavernous sinus fistulas who presented with an isolated trochlear nerve palsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy is widely used to treat human cancer. Patients locally recurring after radiotherapy, however, have increased risk of metastatic progression and poor prognosis. The clinical management of postradiation recurrences remains an unresolved issue. Tumors growing in preirradiated tissues have an increased fraction of hypoxic cells and are more metastatic, a condition known as tumor bed effect. The transcription factor hypoxia inducible factor (HIF)-1 promotes invasion and metastasis of hypoxic tumors, but its role in the tumor bed effect has not been reported. Here, we show that tumor cells derived from SCCVII and HCT116 tumors growing in a preirradiated bed, or selected in vitro through repeated cycles of severe hypoxia, retain invasive and metastatic capacities when returned to normoxia. HIF activity, although facilitating metastatic spreading of tumors growing in a preirradiated bed, is not essential. Through gene expression profiling and gain- and loss-of-function experiments, we identified the matricellular protein CYR61 and alphaVbeta5 integrin as proteins cooperating to mediate these effects. The anti-alphaV integrin monoclonal antibody 17E6 and the small molecular alphaVbeta3/alphaVbeta5 integrin inhibitor EMD121974 suppressed invasion and metastasis induced by CYR61 and attenuated metastasis of tumors growing within a preirradiated field. These results represent a conceptual advance to the understanding of the tumor bed effect and identify CYR61 and alphaVbeta5 integrin as proteins that cooperate to mediate metastasis. They also identify alphaV integrin inhibition as a potential therapeutic approach for preventing metastasis in patients at risk for postradiation recurrences.