998 resultados para scales (weighing devices)
Multi-colour switching of polymer stabilized chiral nematic liquid crystal devices - art. no. 65870X
Resumo:
Rapid and effective thermal processing methods using electron beams are described in this paper. Heating times ranging from a fraction of a second to several seconds and temperatures up to 1400°C are attainable. Applications such as the annealing of ion implanted material, both without significant dopant diffusion and with highly controlled diffusion of impurities, are described. The technique has been used successfully to activate source/drain regions for fine geometry NMOS transistors. It is shown that electron beams can produce localised heating of semiconductor substrates and a resolution of approximately 1 μm has been achieved. Electron beam heating has been applied to improving the crystalline quality of silicon-on sapphire used in CMOS device fabrication. Silicon layers with defect levels approaching bulk material have been obtained. Finally, the combination of isothermal and selective annealing is shown to have application in recrystallisation of polysilicon films on an insulating layer. The approach provides the opportunity of producing a silicon-on-insulator substrate with improved crystalline quality compared to silicon-on-sapphire at a potentially lower cost. It is suggested that rapid heating methods are expected to provide a real alternative to conventional furnace processing of semiconductor devices in the development of fabrication technology. © 1984 Benn electronics Publications Ltd, Luton.
Resumo:
The crystal quality of 0.3-μm-thick as-grown epitaxial silicon-on-sapphire (SOS) was improved using solid-phase epitaxy (SPE) by implantation with silicon to 1015 ions/cm2 at 175 keV and rapid annealing using electron-beam heating, n-channel and p-channel transistormobilities increased by 31 and 19 percent, respectively, and a reduction in ring-oscillator stage delay confirmed that crystal defects near the upper silicon surface had been removed. Leakage in n-channel transistors was not significantly affected by the regrowth process but for p-channel transistors back-channel leakage was considerably greater than for the control devices. This is attributed to aluminum released by damage to the sapphire during silicon implantation. © 1985 IEEE
Resumo:
It has been shown that the apparent benefits of a two-layer stacked SOI system, i.e. packing density and speed improvements, are less than could be expected in the context of a VLSI requirement [1]. In this project the stacked SOI system has been identified as having major application in the realization of integrated, mixed technology systems. Zone-melting-recrystallization (ZMR) with lasers and electron beams have been used to produce device quality SOI material and a small test-bed circuit has been designed as a demonstration of the feasibility of this approach. © 1988.
Resumo:
In low molar mass organosiloxane liquid-crystal materials the siloxane moieties micro-separate and aggregate in planes that could be regarded as an effective or virtual two-dimensional polymer backbone. We show that if a siloxane moiety is attached to a dichroic dye molecule, the micro-segregation of the siloxane moieties makes it possible to include a high concentration of the guest dye (more than 50%) in a host organosiloxane solution. This effect, combined with the temperature independent tilt angles achievable with ferroelectric organosiloxane liquid crystals, provide an ideal material for high-contrast surface-stabilised ferroelectric display devices. We present dyed ferroelectric materials with a temperature independent tilt angle greater than 42 degrees, a wide (room temperature to over 100°C) mesomorphic temperature range and a response time shorter than 500μs in the dye guest host mode.