942 resultados para representational overlap
Resumo:
Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this. We investigate this spiral mode with a linear global stability analysis around the steady bubble and its wake. We obtain the linear direct and adjoint global modes of the linearized Navier-Stokes equations and overlap these to obtain the structural sensitivity of the spiral mode, which identifies the wavemaker region. We also identify regions of absolute instability with a local stability analysis. At moderate swirls, we find that the m=-1 azimuthal mode is the most unstable and that the wavemaker regions of the m=-1 mode lie around the bubble, which is absolutely unstable. The mode is most sensitive to feedback involving the radial and azimuthal components of momentum in the region just upstream of the bubble. To a lesser extent, the mode is also sensitive to feedback involving the axial component of momentum in regions of high shear around the bubble. At an intermediate swirl, in which the bubble and wake have similar absolute growth rates, other researchers have found that the wavemaker of the nonlinear global mode lies in the wake. We agree with their analysis but find that the regions around the bubble are more influential than the wake in determining the growth rate and frequency of the linear global mode. The results from this paper provide the first steps towards passive control strategies for spiral vortex breakdown. © 2013 Cambridge University Press.
Resumo:
This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.
Resumo:
We present a novel method for controlling the growth orientation of individual carbon nanotube (CNT) microstructures on a silicon wafer substrate. Our method controls the CNT forest orientation by patterning the catalyst layer used in the CNTs growth on slanted KOH edges. The overlap of catalyst area on the horizontal bottom and sloped sidewall surfaces of the KOH-etched substrate enables precise variation of the growth direction. These inclined structures can profit from the outstanding mechanical, electrical, thermal, and optical properties of CNTs and can therefore improve the performance of several MEMS devices. Inclined CNT microstructures could for instance be used as cantilever springs in probe card arrays, as tips in dip-pen lithography, and as sensing element in advanced transducers. ©2009 IEEE.
Resumo:
The failure mode of axially loaded simple, single lap joints formed between thin adherends which are flexible in bending is conventionally described as one of axial peeling. We have observed - using high-speed photography - that it is also possible for failure to be preceded by the separation front, or crack, moving in a transverse direction, i.e. perpendicular to the direction of the axial load. A simple energy balance analysis suggests that the critical load for transverse failure is the same as that for axial separation for both flexible lap joints, where the bulk of the stored elastic energy lies in the adhesive, and structural lap joints in which the energy stored in the adherends dominates. The initiation of the failure is dependent on a local increases in either stress or strain energy to some critical values. In the case of a flexible joint, this will occur within the adhesive layer and the critical site will be close to one of the corners of the joint overlap from which the separation front can proceed either axially or transversely. These conclusions are supported by a finite element analysis of a joint formed between adherends of finite width by a low modulus adhesive. © 2012 Taylor & Francis.
Resumo:
An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO. This results in the ability to simulate the transition with detailed chemistry in very short computation times. The tables are then used to optimise the transition with the goal of reducing NO x emissions and fluctuations in IMEP. Copyright © 2010 SAE International.
Resumo:
A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results. The model is used to investigate key control parameters and their effects on parameters that are difficult to measure experimentally. The effect of the spark in the first HCCI cycles is found to have a major impact on the stability of the transition. Copyright © 2010 SAE International.
Resumo:
We show that miscible two-layer free-surface flows of varying viscosity down an inclined substrate are different in their stability characteristics from both immiscible two-layer flows, and flows with viscosity gradients spanning the entire flow. New instability modes arise when the critical layer of the viscosity transport equation overlaps the viscosity gradient. A lubricating configuration with a less viscous wall layer is identified to be the most stabilizing at moderate miscibility (moderate Peclet numbers). This also is in contrast with the immiscible case, where the lubrication configuration is always destabilizing. The co-existence that we find under certain circumstances, of several growing overlap modes, the usual surface mode, and a Tollmien-Schlichting mode, presents interesting new possibilities for nonlinear breakdown. © 2013 AIP Publishing LLC.
Resumo:
We systematically study the growth of carbon nanotube forests by chemical vapor deposition using evaporated monometallic or bimetallic Ni, Co, or Fe films supported on alumina. Our results show two regimes of catalytic activity. When the total thickness of catalyst is larger than nominally 1nm, bimetallic catalysts tend to outperform the equivalent layers of a single metal, yielding taller forests of multi-walled carbon nanotubes (CNTs). In contrast, for layers thinner than ~1nm, bimetallic catalysts are notably less active than individually. However, the amount of small diameter and single-walled CNTs is significantly increased. This possible transition at ~1nm might be related to different catalyst composition after annealing, depending whether or not the films overlap during evaporation and alloy during catalyst formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.
Resumo:
The aim of this review is to identify problems, find general patterns, and extract recommendations for successful management using nontraditional biomanipulation to improve water quality. There are many obstacles that prevent traditional biomanipulation from achieving expectations: expending largely to remove planktivorous fish, reduction of external and internal phosphorus, and macrophyte re-establishment. Grazing pressure from large zooplankton is decoupled in hypereutrophic waters where cyanobacterial blooms flourish. The original idea of biomanipulation (increased zooplankton grazing rate as a tool for controlling nuisance algae) is not the only means of controlling nuisance algae via biotic manipulations. Stocking phytoplanktivorous fish may be considered to be a nontraditional method; however, it can be an effective management tool to control nuisance algal blooms in tropical lakes that are highly productive and unmanageable to reduce nutrient concentrations to low levels. Although small enclosures increase spatial overlap between predators and prey, leading to overestimates of the impact of predation, microcosm and whole-lake experiments have revealed similar community responses to major factors that regulate lake communities, such as nutrients and planktivorous fish. Both enclosure experiments and large-scale observations revealed that the initial phytoplankton community composition greatly impacted the success of biomanipulation. Long-term observations in Lake Donghu and Lake Qiandaohu have documented that silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) (two filter-feeding planktivorous species commonly used in management) can suppress Microcystis blooms efficiently. The introduction of silver and bighead carp could be an effective management technique in eutrophic systems that lack macrozooplankton. We confirmed that nontraditional biomanipulation is only appropriate if the primary aim is to reduce nuisance blooms of large algal species, which cannot be controlled effectively by large herbivorous zooplankton. Alternatively, this type of biomanipulation did not work efficiently in less eutrophic systems where nanophytoplankton dominated.
Resumo:
Silver and bighead carps were cultured in large fish pens to reduce the risks of cyanobacterial bloom outbreaks in Meiliang Bay, Lake Tauhu in 2004 and 2005. Diet compositions and growth rates of the carps were studied from April to November each year. Both carp species fed mainly on zooplankton (> 50% in diet) in 2004 when competition was low, but selected more phytoplankton in 2005 when competition was high. Silver carp had a broader diet breadth than did bighead carp. Higher densities and fewer food resources increased diet breadths but decreased the diet overlap in both types of carps. It can be predicted that silver and bighead carps would be released from diet competition and shift to feed mainly on zooplankton at low densities, decreasing the efficiency of controlling cyanobacterial blooms. Conclusively, when silver and bighead carps are used to control cyanobacterial blooms, a sufficiently high stocking density is very important for a successful practice.
Resumo:
Choosing appropriate architectures and regularization strategies of deep networks is crucial to good predictive performance. To shed light on this problem, we analyze the analogous problem of constructing useful priors on compositions of functions. Specifically, we study the deep Gaussian process, a type of infinitely-wide, deep neural network. We show that in standard architectures, the representational capacity of the network tends to capture fewer degrees of freedom as the number of layers increases, retaining only a single degree of freedom in the limit. We propose an alternate network architecture which does not suffer from this pathology. We also examine deep covariance functions, obtained by composing infinitely many feature transforms. Lastly, we characterize the class of models obtained by performing dropout on Gaussian processes.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
This paper reports large variations in stable carbon and nitrogen isotope ratios of lake anchovy (Coilia ectenes taihuensis) from Lake Chaohu, China. The lake anchovy exhibited a significant C-13- and N-15- enrichment in relation to increasing fish length, and the isotopic compositions of small lake anchovy (<= 130 mm) were significantly more enriched than those of large lake anchovy (> 130 mm). The significant differences in the isotopic compositions of small and large lake anchovy suggested that their assimilated diets differed over a period of time and reflected the size-related diet shift of this fish. Bellamya aeruginosa and Corbicula fluminea were used to establish the baseline carbon signal of benthic and pelagic food webs, and these data were used to parameterize a 2-source mixing model to estimate in consumers the contribution of carbon derived from benthic versus pelagic food webs. Mixing models showed that small lake anchovy derived only 37% of their carbon from benthic food web, indicating increased reliance on pelagic prey, whereas benthic prey contributed 71% of large lake anchovy diet, suggesting greater use of benthic sources. These data indicate that there was a change in lake anchovy feeding strategy related to their size, suggesting a role in dynamic coupling between pelagic and benthic food chains. The trophic position of small lake anchovy averaged 3.0, indicating a zooplankton-based diet, compared with 3.6 in large lake anchovy, indicative of an increase in piscivorous diet. Overlap in the isotopic compositions of small and large lake anchovy probably indicated that these fish occasionally shared common diets, as suggested by stomach content studies, and/or resulted from the differences in the rate of isotopic turnover depending on differences in growth rate and metabolic turnover between small and large anchovy during diet shift from pelagic to benthic food webs. This study presents the contributions of benthic and pelagic food webs supporting lake anchovy and indicates that the intraspecific isotopic dynamic should be considered when applying stable isotope analyses to infer trophic interactions in aquatic ecosystems.
Resumo:
The taxonomic problem of the cyprinid species of genus Spinibarbus, occurring in southern China and northern Vietnam, was resolved on the basis of molecular and morphological analyses. Spinibarbus caldwelli and Spinibarbus hollandi have a smooth posterior edge of the last unbranched dorsal fin ray among species in the genus. Spinibarbus caldwelli is currently regarded as a junior synonym of S. hollandi because of ambiguities in diagnostic characters. In this article, 11 mtDNA cytochrome b sequences of Spinibarbus specimens were analyzed together with Barbodes gonionotus and Puntius conchonius as outgroups. Our results showed that specimens identified as S. hollandi from Taiwan were different from those from the Asian mainland at a high level of genetic divergence (0.097-0.112), which is higher than that between the two valid species, S. sinensis and S. yunnanensis ( 0.089), and suggested that Taiwan specimens should be considered as a different species from the Asian mainland one. In a molecular phylogenetic analysis, the sister-group relationship between Taiwan specimens and the Asian mainland specimens was supported strongly by a high confidence level ( 100% in bootstrap value). Further analysis of morphological characters showed that overlap of diagnostic characters is much weaker than previously suggested. Taiwan specimens had 8 branched rays in the dorsal fin, whereas those from the mainland had almost 9-10. The molecular and morphological differences suggest S. caldwelli to be valid. The molecular divergence shows the genetic speciation of S. hollandi and S. caldwelli might have occurred 5.6-4.9 million years ago; the former could be a relict species in Taiwan, and the latter dispersed in the Asian mainland.