956 resultados para remote diagnostics of electric drives
Resumo:
The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.
Resumo:
Wildfires are part of the Mediterranean ecosystem, however, in Israel all wildfires are human caused, either intentionally or un-intentionally. In this study we aimed to develop and test a new method for mapping fire scars from MODIS imagery, to examine the temporal and spatial patterns of wildfires in Israel in the 2000s and to examine the factors controlling Israel's wildfire regime. To map the fires we used two 'off-the-shelf' MODIS fire products as our basis-the 1 km MODIS Collection 5 fire hotspots, the 500 m MCD45A1 burnt areas-and we created a new set of fire scar maps from the 250 m MOD13Q1 product. We carried out a cross comparison of the three MODIS based wildfire scar maps and evaluated them independently against the wild fire scars mapped from 30 m Landsat TM imagery. To examine the factors controlling wildfires we used GIS layers of rainfall, land use, and a Landsat-based national vegetation map. Wildfires occurred in areas where annual rainfall was above 250 mm, mostly in areas with herbaceous vegetation. Wildfire frequency was especially high in the Golan Heights and in the foothills of the Judean mountains, and a high correspondence was found between military training zones and the spatial distribution of fire scars. The use of MODIS satellite images enabled us to map wildfires at a national scale due to the high temporal resolution of the sensor. Our MOD13Q1 based mapping of fire scars adequately mapped large (>1 km**2) fires with accuracies above 80%. Such large fires account for a large proportion of all fires, and pose the greatest threats. This database can aid managers in determining wildfire risks in space and in time.
Bathymetric map of Heron Reef, Australia, derived from airborne hyperspectral data at 1 m resolution
Resumo:
A simple method for efficient inversion of arbitrary radiative transfer models for image analysis is presented. The method operates by representing the shape of the function that maps model parameters to spectral reflectance by an adaptive look-up tree (ALUT) that evenly distributes the discretization error of tabulated reflectances in spectral space. A post-processing step organizes the data into a binary space partitioning tree that facilitates an efficient inversion search algorithm. In an example shallow water remote sensing application, the method performs faster than an implementation of previously published methodology and has the same accuracy in bathymetric retrievals. The method has no user configuration parameters requiring expert knowledge and minimizes the number of forward model runs required, making it highly suitable for routine operational implementation of image analysis methods. For the research community, straightforward and robust inversion allows research to focus on improving the radiative transfer models themselves without the added complication of devising an inversion strategy.