832 resultados para reduced glutathione


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemoreception is a key activity by which many aquatic animals perceive their environment, and therefore abiotic disruptions to this process could have serious impacts on the survival and fitness of individuals, and on species interactions. Hermit crabs are subject to cyclical reductions in the pH of the water in the intertidal rock pools that they inhabit. Such reductions may be further exacerbated by ongoing ocean acidification and/or leakage of carbon dioxide from geological storage sites and coastal upwelling events. Here we test the chemo-sensory responses of the hermit crab Pagurus bernhardus (Linnaeus) to a food odour under reduced pH conditions (pHNBS = 6.80). Acidifying the odour had no effect on its attractiveness indicating no permanent degradation of the cue; however, the pH of the sea water did affect the crabs' responses. Hermit crabs kept and tested in reduced pH sea water had lower antennular flicking rates (the ‘sniffing’ response in decapods); were less successful in locating the odour source, and showed an overall decline in locomotory activity compared to those in untreated sea water. Analysis of their haemolymph revealed a greater concentration of chloride ions ([Cl−]) in the reduced pH treatment group, suggesting iono-regulatory disruption; however, there was no correlation between [Cl−] and locomotory activity, suggesting a specific effect on chemoreception. This study shows that the chemo-responsiveness of a crustacean may be influenced by both naturally occurring pH fluctuations and future anthropogenically-induced changes in ocean pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, (1)H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mussels tolerant to seawater pH's that are projected to occur by 2300 due to ocean acidification.•Exposure to pH 6.50 reduced mussel immune response, yet in the absence of a pathogen.•Subsequent pathogenic challenge led to a reversal of immune suppression at pH 6.50.•Study highlights the importance of undertaking multiple stressor exposures.•Shows a need to consider physiological trade-offs and measure responses functionally

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Hyperglycaemia is a well recognized pathogenic factor of long term complications in diabetes mellitus. Hyperglycaemia not only generates reactive oxygen species but also attenuates antioxidant mechanisms creating a state of oxidative stress. Methods: Porcine mesangial cells were cultured in high glucose (HG) for ten days to investigate the effects on the antioxidant defences of the cell. Results: Mesangial cells cultured in HG conditions had significantly reduced levels of glutathione (GSH) compared with those grown in normal glucose (NG). The reduced GSH levels were accompanied by decreased gene expression of both subunits of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in de novo synthesis of GSH. Elevated levels of intracellular malondialdehyde (MDA) were found in cells exposed to HG conditions. HG also caused elevated mRNA levels of the antioxidant enzymes CuZn superoxide dismutase (SOD) and MnSOD. These changes were accompanied by increased mRNA levels of extracellular matrix proteins (ECM), fibronectin (FN) and collagen IV (CIV). Addition of antioxidants to high glucose caused a significant reversal of FN and CIV gene expression; alpha-lipoic acid also upregulated gamma-GCS gene expression and restored intracellular GSH and MDA levels. Conclusions: We have demonstrated the existence of glucose induced-oxidative stress in mesangial cells as evidenced by elevated MDA and decreased GSH levels. The decreased levels of GSH are as a result of decreased mRNA expression of gamma-GCS within the cell. Antioxidants caused a significant reversal of FN and CIV gene expression suggesting an aetiological link between oxidative stress and increased ECM protein synthesis.