890 resultados para real option analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aging population in many countries brings into focus rising healthcare costs and pressure on conventional healthcare services. Pervasive healthcare has emerged as a viable solution capable of providing a technology-driven approach to alleviate such problems by allowing healthcare to move from the hospital-centred care to self-care, mobile care, and at-home care. The state-of-the-art studies in this field, however, lack a systematic approach for providing comprehensive pervasive healthcare solutions from data collection to data interpretation and from data analysis to data delivery. In this thesis we introduce a Context-aware Real-time Assistant (CARA) architecture that integrates novel approaches with state-of-the-art technology solutions to provide a full-scale pervasive healthcare solution with the emphasis on context awareness to help maintaining the well-being of elderly people. CARA collects information about and around the individual in a home environment, and enables accurately recognition and continuously monitoring activities of daily living. It employs an innovative reasoning engine to provide accurate real-time interpretation of the context and current situation assessment. Being mindful of the use of the system for sensitive personal applications, CARA includes several mechanisms to make the sophisticated intelligent components as transparent and accountable as possible, it also includes a novel cloud-based component for more effective data analysis. To deliver the automated real-time services, CARA supports interactive video and medical sensor based remote consultation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile-based Activity Recognition, (ii) Intelligent Healthcare Decision Support Systems and (iii) Home-based Remote Monitoring Systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real time monitoring of oxygenation and respiration is on the cutting edge of bioanalysis, including studies of cell metabolism, bioenergetics, mitochondrial function and drug toxicity. This thesis presents the development and evaluation of new luminescent probes and techniques for intracellular O2 sensing and imaging. A new oxygen consumption rate (OCR) platform based on the commercial microfluidic perfusion channel μ-slides compatible with extra- and intracellular O2 sensitive probes, different cell lines and measurement conditions was developed. The design of semi-closed channels allowed cell treatments, multiplexing with other assays and two-fold higher sensitivity to compare with microtiter plate. We compared three common OCR platforms: hermetically sealed quartz cuvettes for absolute OCRs, partially sealed with mineral oil 96-WPs for relative OCRs, and open 96-WPs for local cell oxygenation. Both 96-WP platforms were calibrated against absolute OCR platform with MEF cell line, phosphorescent O2 probe MitoXpress-Intra and time-resolved fluorescence reader. Found correlations allow tracing of cell respiration over time in a high throughput format with the possibility of cell stimulation and of changing measurement conditions. A new multimodal intracellular O2 probe, based on the phosphorescent reporter dye PtTFPP, fluorescent FRET donor and two-photon antennae PFO and cationic nanoparticles RL-100 was described. This probe, called MM2, possesses high brightness, photo- and chemical stability, low toxicity, efficient cell staining and high-resolution intracellular O2 imaging with 2D and 3D cell cultures in intensity, ratiometric and lifetime-based modalities with luminescence readers and FLIM microscopes. Extended range of O2 sensitive probes was designed and studied in order to optimize their spectral characteristics and intracellular targeting, using different NPs materials, delivery vectors, ratiometric pairs and IR dyes. The presented improvements provide useful tool for high sensitive monitoring and imaging of intracellular O2 in different measurement formats with wide range of physiological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Leaving Certificate (LC) is the national, standardised state examination in Ireland necessary for entry to third level education – this presents a massive, raw corpus of data with the potential to yield invaluable insight into the phenomena of learner interlanguage. With samples of official LC Spanish examination data, this project has compiled a digitised corpus of learner Spanish comprised of the written and oral production of 100 candidates. This corpus was then analysed using a specific investigative corpus technique, Computer-aided Error Analysis (CEA, Dagneaux et al, 1998). CEA is a powerful apparatus in that it greatly facilitates the quantification and analysis of a large learner corpus in digital format. The corpus was both compiled and analysed with the use of UAM Corpus Tool (O’Donnell 2013). This Tool allows for the recording of candidate-specific variables such as grade, examination level, task type and gender, therefore allowing for critical analysis of the corpus as one unit, as separate written and oral sub corpora and also of performance per task, level and gender. This is an interdisciplinary work combining aspects of Applied Linguistics, Learner Corpus Research and Foreign Language (FL) Learning. Beginning with a review of the context of FL learning in Ireland and Europe, I go on to discuss the disciplinary context and theoretical framework for this work and outline the methodology applied. I then perform detailed quantitative and qualitative analyses before going on to combine all research findings outlining principal conclusions. This investigation does not make a priori assumptions about the data set, the LC Spanish examination, the context of FLs or of any aspect of learner competence. It undertakes to provide the linguistic research community and the domain of Spanish language learning and pedagogy in Ireland with an empirical, descriptive profile of real learner performance, characterising learner difficulty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the storage and use of residual newborn screening (NBS) samples has gained attention. To inform ongoing policy discussions, this article provides an update of previous work on new policies, educational materials, and parental options regarding the storage and use of residual NBS samples. A review of state NBS Web sites was conducted for information related to the storage and use of residual NBS samples in January 2010. In addition, a review of current statutes and bills introduced between 2005 and 2009 regarding storage and/or use of residual NBS samples was conducted. Fourteen states currently provide information about the storage and/or use of residual NBS samples. Nine states provide parents the option to request destruction of the residual NBS sample after the required storage period or the option to exclude the sample for research uses. In the coming years, it is anticipated that more states will consider policies to address parental concerns about the storage and use of residual NBS samples. Development of new policies regarding storage and use of residual NBS samples will require careful consideration of impact on NBS programs, parent and provider educational materials, and respect for parents among other issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analytical method that yields the real and imaginary parts of the refractive index (RI) from low-coherence interferometry measurements, leading to the separation of the scattering and absorption coefficients of turbid samples. The imaginary RI is measured using time-frequency analysis, with the real part obtained by analyzing the nonlinear phase induced by a sample. A derivation relating the real part of the RI to the nonlinear phase term of the signal is presented, along with measurements from scattering and nonscattering samples that exhibit absorption due to hemoglobin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of supervised linear dimensionality reduction, taking an information-theoretic viewpoint. The linear projection matrix is designed by maximizing the mutual information between the projected signal and the class label. By harnessing a recent theoretical result on the gradient of mutual information, the above optimization problem can be solved directly using gradient descent, without requiring simplification of the objective function. Theoretical analysis and empirical comparison are made between the proposed method and two closely related methods, and comparisons are also made with a method in which Rényi entropy is used to define the mutual information (in this case the gradient may be computed simply, under a special parameter setting). Relative to these alternative approaches, the proposed method achieves promising results on real datasets. Copyright 2012 by the author(s)/owner(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic labeling of innate immune cell lineages within the larval zebrafish allows for real-time, in vivo analyses of microbial pathogenesis within a vertebrate host. To date, labeling of zebrafish macrophages has been relatively limited, with the most specific expression coming from the mpeg1 promoter. However, mpeg1 transcription at both endogenous and transgenic loci becomes attenuated in the presence of intracellular pathogens, including Salmonella typhimurium and Mycobacterium marinum. Here, we describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection. Additionally, we have developed a novel macrophage-specific Cre transgenic line under the control of mfap4, enabling macrophage-specific expression using existing floxed transgenic lines. These tools enrich the repertoire of transgenic lines and promoters available for studying zebrafish macrophage dynamics during infection and inflammation and add flexibility to the design of future macrophage-specific transgenic lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The outcomes for both (i) radiation therapy and (ii) preclinical small animal radio- biology studies are dependent on the delivery of a known quantity of radiation to a specific and intentional location. Adverse effects can result from these procedures if the dose to the target is too high or low, and can also result from an incorrect spatial distribution in which nearby normal healthy tissue can be undesirably damaged by poor radiation delivery techniques. Thus, in mice and humans alike, the spatial dose distributions from radiation sources should be well characterized in terms of the absolute dose quantity, and with pin-point accuracy. When dealing with the steep spatial dose gradients consequential to either (i) high dose rate (HDR) brachytherapy or (ii) within the small organs and tissue inhomogeneities of mice, obtaining accurate and highly precise dose results can be very challenging, considering commercially available radiation detection tools, such as ion chambers, are often too large for in-vivo use.

In this dissertation two tools are developed and applied for both clinical and preclinical radiation measurement. The first tool is a novel radiation detector for acquiring physical measurements, fabricated from an inorganic nano-crystalline scintillator that has been fixed on an optical fiber terminus. This dosimeter allows for the measurement of point doses to sub-millimeter resolution, and has the ability to be placed in-vivo in humans and small animals. Real-time data is displayed to the user to provide instant quality assurance and dose-rate information. The second tool utilizes an open source Monte Carlo particle transport code, and was applied for small animal dosimetry studies to calculate organ doses and recommend new techniques of dose prescription in mice, as well as to characterize dose to the murine bone marrow compartment with micron-scale resolution.

Hardware design changes were implemented to reduce the overall fiber diameter to <0.9 mm for the nano-crystalline scintillator based fiber optic detector (NanoFOD) system. Lower limits of device sensitivity were found to be approximately 0.05 cGy/s. Herein, this detector was demonstrated to perform quality assurance of clinical 192Ir HDR brachytherapy procedures, providing comparable dose measurements as thermo-luminescent dosimeters and accuracy within 20% of the treatment planning software (TPS) for 27 treatments conducted, with an inter-quartile range ratio to the TPS dose value of (1.02-0.94=0.08). After removing contaminant signals (Cerenkov and diode background), calibration of the detector enabled accurate dose measurements for vaginal applicator brachytherapy procedures. For 192Ir use, energy response changed by a factor of 2.25 over the SDD values of 3 to 9 cm; however a cap made of 0.2 mm thickness silver reduced energy dependence to a factor of 1.25 over the same SDD range, but had the consequence of reducing overall sensitivity by 33%.

For preclinical measurements, dose accuracy of the NanoFOD was within 1.3% of MOSFET measured dose values in a cylindrical mouse phantom at 225 kV for x-ray irradiation at angles of 0, 90, 180, and 270˝. The NanoFOD exhibited small changes in angular sensitivity, with a coefficient of variation (COV) of 3.6% at 120 kV and 1% at 225 kV. When the NanoFOD was placed alongside a MOSFET in the liver of a sacrificed mouse and treatment was delivered at 225 kV with 0.3 mm Cu filter, the dose difference was only 1.09% with use of the 4x4 cm collimator, and -0.03% with no collimation. Additionally, the NanoFOD utilized a scintillator of 11 µm thickness to measure small x-ray fields for microbeam radiation therapy (MRT) applications, and achieved 2.7% dose accuracy of the microbeam peak in comparison to radiochromic film. Modest differences between the full-width at half maximum measured lateral dimension of the MRT system were observed between the NanoFOD (420 µm) and radiochromic film (320 µm), but these differences have been explained mostly as an artifact due to the geometry used and volumetric effects in the scintillator material. Characterization of the energy dependence for the yttrium-oxide based scintillator material was performed in the range of 40-320 kV (2 mm Al filtration), and the maximum device sensitivity was achieved at 100 kV. Tissue maximum ratio data measurements were carried out on a small animal x-ray irradiator system at 320 kV and demonstrated an average difference of 0.9% as compared to a MOSFET dosimeter in the range of 2.5 to 33 cm depth in tissue equivalent plastic blocks. Irradiation of the NanoFOD fiber and scintillator material on a 137Cs gamma irradiator to 1600 Gy did not produce any measurable change in light output, suggesting that the NanoFOD system may be re-used without the need for replacement or recalibration over its lifetime.

For small animal irradiator systems, researchers can deliver a given dose to a target organ by controlling exposure time. Currently, researchers calculate this exposure time by dividing the total dose that they wish to deliver by a single provided dose rate value. This method is independent of the target organ. Studies conducted here used Monte Carlo particle transport codes to justify a new method of dose prescription in mice, that considers organ specific doses. Monte Carlo simulations were performed in the Geant4 Application for Tomographic Emission (GATE) toolkit using a MOBY mouse whole-body phantom. The non-homogeneous phantom was comprised of 256x256x800 voxels of size 0.145x0.145x0.145 mm3. Differences of up to 20-30% in dose to soft-tissue target organs was demonstrated, and methods for alleviating these errors were suggested during whole body radiation of mice by utilizing organ specific and x-ray tube filter specific dose rates for all irradiations.

Monte Carlo analysis was used on 1 µm resolution CT images of a mouse femur and a mouse vertebra to calculate the dose gradients within the bone marrow (BM) compartment of mice based on different radiation beam qualities relevant to x-ray and isotope type irradiators. Results and findings indicated that soft x-ray beams (160 kV at 0.62 mm Cu HVL and 320 kV at 1 mm Cu HVL) lead to substantially higher dose to BM within close proximity to mineral bone (within about 60 µm) as compared to hard x-ray beams (320 kV at 4 mm Cu HVL) and isotope based gamma irradiators (137Cs). The average dose increases to the BM in the vertebra for these four aforementioned radiation beam qualities were found to be 31%, 17%, 8%, and 1%, respectively. Both in-vitro and in-vivo experimental studies confirmed these simulation results, demonstrating that the 320 kV, 1 mm Cu HVL beam caused statistically significant increased killing to the BM cells at 6 Gy dose levels in comparison to both the 320 kV, 4 mm Cu HVL and the 662 keV, 137Cs beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time polymerase chain reaction (PCR) has recently been described as a new tool to measure and accurately quantify mRNA levels. In this study, we have applied this technique to evaluate cytokine mRNA synthesis induced by antigenic stimulation with purified protein derivative (PPD) or heparin-binding haemagglutinin (HBHA) in human peripheral blood mononuclear cells (PBMC) from Mycobacterium tuberculosis-infected individuals. Whereas PPD and HBHA optimally induced IL-2 mRNA after respectively 8 and 16 to 24 h of in vitro stimulation, longer in vitro stimulation times were necessary for optimal induction of interferon-gamma (IFN-gamma) mRNA, respectively 16 to 24 h for PPD and 24 to 96 h for HBHA. IL-13 mRNA was optimally induced by in vitro stimulation after 16-48 h for PPD and after 48 to 96 h for HBHA. Comparison of antigen-induced Th1 and Th2 cytokines appears, therefore, valuable only if both cytokine types are analysed at their optimal time point of production, which, for a given cytokine, may differ for each antigen tested. Results obtained by real-time PCR for IFN-gamma and IL-13 mRNA correlated well with those obtained by measuring the cytokine concentrations in cell culture supernatants, provided they were high enough to be detected. We conclude that real-time PCR can be successfully applied to the quantification of antigen-induced cytokine mRNA and to the evaluation of the Th1/Th2 balance, only if the kinetics of cytokine mRNA appearance are taken into account and evaluated for each cytokine measured and each antigen analysed.