910 resultados para protein phosphorylation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

G-substrate, an endogenous substrate for cGMP-dependent protein kinase, exists almost exclusively in cerebellar Purkinje cells, where it is possibly involved in the induction of long-term depression. A G-substrate cDNA was identified by screening expressed sequence tag databases from a human brain library. The deduced amino acid sequence of human G-substrate contained two putative phosphorylation sites (Thr-68 and Thr-119) with amino acid sequences [KPRRKDT(p)PALH] that were identical to those reported for rabbit G-substrate. G-substrate mRNA was expressed almost exclusively in the cerebellum as a single transcript. The human G-substrate gene was mapped to human chromosome 7p15 by radiation hybrid panel analysis. In vitro translation products of the cDNA showed an apparent molecular mass of 24 kDa on SDS/PAGE which was close to that of purified rabbit G-substrate (23 kDa). Bacterially expressed human G-substrate is a heat-stable and acid-soluble protein that cross-reacts with antibodies raised against rabbit G-substrate. Recombinant human G-substrate was phosphorylated efficiently by cGMP-dependent protein kinase exclusively at Thr residues, and it was recognized by antibodies specific for rabbit phospho-G-substrate. The amino acid sequences surrounding the sites of phosphorylation in G-substrate are related to those around Thr-34 and Thr-35 of the dopamine- and cAMP-regulated phosphoprotein DARPP-32 and inhibitor-1, respectively, two potent inhibitors of protein phosphatase 1. However, purified G-substrate phosphorylated by cGMP-dependent protein kinase inhibited protein phosphatase 2A more effectively than protein phosphatase 1, suggesting a distinct role as a protein phosphatase inhibitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrestins are regulatory proteins that participate in the termination of G protein-mediated signal transduction. The major arrestin in the Drosophila visual system, Arrestin 2 (Arr2), is phosphorylated in a light-dependent manner by a Ca2+/calmodulin-dependent protein kinase and has been shown to be essential for the termination of the visual signaling cascade in vivo. Here, we report the isolation of nine alleles of the Drosophila photoreceptor cell-specific arr2 gene. Flies carrying each of these alleles underwent light-dependent retinal degeneration and displayed electrophysiological defects typical of previously identified arrestin mutants, including an allele encoding a protein that lacks the major Ca2+/calmodulin-dependent protein kinase site. The phosphorylation mutant had very low levels of phosphorylation and lacked the light-dependent phosphorylation observed with wild-type Arr2. Interestingly, we found that the Arr2 phosphorylation mutant was still capable of binding to rhodopsin; however, it was unable to release from membranes once rhodopsin had converted back to its inactive form. This finding suggests that phosphorylation of arrestin is necessary for the release of arrestin from rhodopsin. We propose that the sequestering of arrestin to membranes is a possible mechanism for retinal disease associated with previously identified rhodopsin alleles in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have characterized HsCdc6, a human protein homologous to the budding yeast Cdc6p that is essential for DNA replication. We show that, unlike Cdc6p, the levels of HsCdc6 protein remain constant throughout the cell cycle in human cells. However, phosphorylation of HsCdc6 is regulated during the cell cycle. HsCdc6 is an excellent substrate for Cdk2 in vitro and is phosphorylated in vivo at three sites (Ser-54, Ser-74, and Ser-106) that are phosphorylated by Cdk2 in vitro, strongly suggesting that HsCdc6 is an in vivo Cdk substrate. HsCdc6 is nuclear in G1, but translocates to the cytoplasm at the start of S phase via Crm1-dependent export. An HsCdc6A1A2A3 mutant, which mimics unphosphorylated HsCdc6, is exclusively nuclear, and its expression inhibits initiation of DNA replication. An HsCdc6E1E2E3 mutant, which mimics phosphorylated HsCdc6, is exclusively cytoplasmic and is not associated with the chromatin/nuclear matrix fraction. Based on these results, we propose that phosphorylation of HsCdc6 by Cdks regulates DNA replication of at least two steps: first, by promoting initiation of DNA replication and, second, through nuclear exclusion preventing DNA rereplication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of β-catenin stability is essential for Wnt signal transduction during development and tumorigenesis. It is well known that serine-phosphorylation of β-catenin by the Axin–glycogen synthase kinase (GSK)–3β complex targets β-catenin for ubiquitination–degradation, and mutations at critical phosphoserine residues stabilize β-catenin and cause human cancers. How β-catenin phosphorylation results in its degradation is undefined. Here we show that phosphorylated β-catenin is specifically recognized by β-Trcp, an F-box/WD40-repeat protein that also associates with Skp1, an essential component of the ubiquitination apparatus. β-catenin harboring mutations at the critical phosphoserine residues escapes recognition by β-Trcp, thus providing a molecular explanation for why these mutations cause β-catenin accumulation that leads to cancer. Inhibition of endogenous β-Trcp function by a dominant negative mutant stabilizes β-catenin, activates Wnt/β-catenin signaling, and induces axis formation in Xenopus embryos. Therefore, β-Trcp plays a central role in recruiting phosphorylated β-catenin for degradation and in dorsoventral patterning of the Xenopus embryo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell receptor (TCR) antagonists inhibit antigen-induced T cell activation and by themselves fail to induce phenotypic changes associated with T cell activation. However, we have recently shown that TCR antagonists are inducers of antigen-presenting cell (APC)–T cell conjugates. The signaling pathway associated with this cytoskeleton-dependent event appears to involve tyrosine phosphorylation and activation of Vav. In this study, we investigated the role played by the protein tyrosine kinases Fyn, Lck, and ZAP-70 in antagonist-induced signaling pathway. Antagonist stimulation increased tyrosine phosphorylation and kinase activity of Fyn severalfold, whereas little or no increase in Lck and ZAP-70 activity was observed. Second, TCR stimulation of Lck−, Fynhi Jurkat cells induced strong tyrosine phosphorylation of Vav. In contrast, minimal increase in tyrosine phosphorylation of Vav was observed in Lckhi, Fynlo Jurkat cells. Finally, study of T cells from a Fyn-deficient TCR transgenic mouse also showed that Fyn was required for tyrosine phosphorylation and activation of Vav induced by both antagonist and agonist peptides. The deficiency in Vav phosphorylation in Fyn-deficient T cells was associated with a defect in the formation of APC–T cell conjugates when T cells were stimulated with either agonist or antagonist peptide. We conclude from these results that Vav is a selective substrate for Fyn, especially under conditions of low-affinity TCR-mediated signaling, and that this signaling pathway involving Fyn, Vav, and Rac-1 is required for the cytoskeletal reorganization that leads to T cell–APC conjugates and the formation of the immunologic synapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Snf1 protein kinase family has been conserved in eukaryotes. In the yeast Saccharomyces cerevisiae, Snf1 is essential for transcription of glucose-repressed genes in response to glucose starvation. The direct interaction between Snf1 and its activating subunit, Snf4, within the kinase complex is regulated by the glucose signal. Glucose inhibition of the Snf1-Snf4 interaction depends on protein phosphatase 1 and its targeting subunit, Reg1. Here we show that Reg1 interacts with the Snf1 catalytic domain in the two-hybrid system. This interaction increases in response to glucose limitation and requires the conserved threonine in the activation loop of the kinase, a putative phosphorylation site. The inhibitory effect of Reg1 appears to require the Snf1 regulatory domain because a reg1Δ mutation no longer relieves glucose repression of transcription when Snf1 function is provided by the isolated catalytic domain. Finally, we show that abolishing the Snf1 catalytic activity by mutation of the ATP-binding site causes elevated, constitutive interaction with Reg1, indicating that Snf1 negatively regulates its own interaction with Reg1. We propose a model in which protein phosphatase 1, targeted by Reg1, facilitates the conformational change of the kinase complex from its active state to the autoinhibited state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was performed by using a rat brain cDNA library. This screen identified a unique clone of 1.4 kb, which encoded a 79-aa brain-specific protein that bound the catalytic domain of CaM-KII α and β and potently inhibited kinase activity with an IC50 of 50 nM. The inhibitory protein (CaM-KIIN), and a 28-residue peptide derived from it (CaM-KIINtide), was highly selective for inhibition of CaM-KII with little effect on CaM-KI, CaM-KIV, CaM-KK, protein kinase A, or protein kinase C. CaM-KIIN interacted only with activated CaM-KII (i.e., in the presence of Ca2+/CaM or after autophosphorylation) by using glutathione S-transferase/CaM-KIIN precipitations as well as coimmunoprecipitations from rat brain extracts or from HEK293 cells cotransfected with both constructs. Colocalization of CaM-KIIN with activated CaM-KII was demonstrated in COS-7 cells transfected with green fluorescent protein fused to CaM-KIIN. In COS-7 cells phosphorylation of transfected α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors by CaM-KII, but not by protein kinase C, was blocked upon cotransfection with CaM-KIIN. These results characterize a potent and specific cellular inhibitor of CaM-KII that may have an important role in the physiological regulation of this key protein kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The circadian clock-associated 1 (CCA1) gene encodes a Myb-related transcription factor that has been shown to be involved in the phytochrome regulation of Lhcb1*3 gene expression and in the function of the circadian oscillator in Arabidopsis thaliana. By using a yeast interaction screen to identify proteins that interact with CCA1, we have isolated a cDNA clone encoding a regulatory (β) subunit of the protein kinase CK2 and have designated it as CKB3. CKB3 is the only reported example of a third β-subunit of CK2 found in any organism. CKB3 interacts specifically with CCA1 both in a yeast two-hybrid system and in an in vitro interaction assay. Other subunits of CK2 also show an interaction with CCA1 in vitro. CK2 β-subunits stimulate binding of CCA1 to the CCA1 binding site on the Lhcb1*3 gene promoter, and recombinant CK2 is able to phosphorylate CCA1 in vitro. Furthermore, Arabidopsis plant extracts contain a CK2-like activity that affects the formation of a DNA–protein complex containing CCA1. These results suggest that CK2 can modulate CCA1 activity both by direct interaction and by phosphorylation of the CCA1 protein and that CK2 may play a role in the function of CCA1 in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actin-activated ATPase activity of Acanthamoeba myosin IC is stimulated 15- to 20-fold by phosphorylation of Ser-329 in the heavy chain. In most myosins, either glutamate or aspartate occupies this position, which lies within a surface loop that forms part of the actomyosin interface. To investigate the apparent need for a negative charge at this site, we mutated Ser-329 to alanine, asparagine, aspartate, or glutamate and coexpressed the Flag-tagged wild-type or mutant heavy chain and light chain in baculovirus-infected insect cells. Recombinant wild-type myosin IC was indistinguishable from myosin IC purified from Acanthamoeba as determined by (i) the dependence of its actin-activated ATPase activity on heavy-chain phosphorylation, (ii) the unusual triphasic dependence of its ATPase activity on the concentration of F-actin, (iii) its Km for ATP, and (iv) its ability to translocate actin filaments. The Ala and Asn mutants had the same low actin-activated ATPase activity as unphosphorylated wild-type myosin IC. The Glu mutant, like the phosphorylated wild-type protein, was 16-fold more active than unphosphorylated wild type, and the Asp mutant was 8-fold more active. The wild-type and mutant proteins had the same Km for ATP. Unphosphorylated wild-type protein and the Ala and Asn mutants were unable to translocate actin filaments, whereas the Glu mutant translocated filaments at the same velocity, and the Asp mutant at 50% the velocity, as phosphorylated wild-type proteins. These results demonstrate that an acidic amino acid can supply the negative charge in the surface loop required for the actin-dependent activities of Acanthamoeba myosin IC in vitro and indicate that the length of the side chain that delivers this charge is important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kss1, a yeast mitogen-activated protein kinase (MAPK), in its unphosphorylated (unactivated) state binds directly to and represses Ste12, a transcription factor necessary for expression of genes whose promoters contain filamentous response elements (FREs) and genes whose promoters contain pheromone response elements (PREs). Herein we show that two nuclear proteins, Dig1 and Dig2, are required cofactors in Kss1-imposed repression. Dig1 and Dig2 cooperate with Kss1 to repress Ste12 action at FREs and regulate invasive growth in a naturally invasive strain. Kss1-imposed Dig-dependent repression of Ste12 also occurs at PREs. However, maintenance of repression at PREs is more dependent on Dig1 and/or Dig2 and less dependent on Kss1 than repression at FREs. In addition, derepression at PREs is more dependent on MAPK-mediated phosphorylation than is derepression at FREs. Differential utilization of two types of MAPK-mediated regulation (binding-imposed repression and phosphorylation-dependent activation), in combination with distinct Ste12-containing complexes, contributes to the mechanisms by which separate extracellular stimuli that use the same MAPK cascade can elicit two different transcriptional responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of a peptide hormone to affect many different intracellular targets is thought to be possible because of the modular organization of signal transducing molecules in the cell. Evidence for the presence of signaling modules in metazoan cells, however, is incomplete. Herein we show, with morphology and cell fractionation, that all the components of a mitogen-activated protein kinase pathway are concentrated in caveolae of unstimulated human fibroblasts. Addition of platelet-derived growth factor to either the intact cell or caveolae isolated from these cells stimulates tyrosine phosphorylation and activates mitogen-activated protein kinases in caveolae. The molecular machinery for kinase activation, therefore, is preorganized at the cell surface of quiescent cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PlantsP database is a curated database that combines information derived from sequences with experimental functional genomics information. PlantsP focuses on plant protein kinases and protein phosphatases. The database will specifically provide a resource for information on a collection of T-DNA insertion mutants (knockouts) in each protein kinase and phosphatase in Arabidopsis thaliana. PlantsP also provides a curated view of each protein that includes a comprehensive annotation of functionally related sequence motifs, sequence family definitions, alignments and phylogenetic trees, and descriptive information drawn directly from the literature. PlantsP is available at http://PlantsP.sdsc.edu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focal adhesion kinase (FAK) is an important regulator of integrin signaling in adherent cells and accordingly its activity is significantly modulated during mitosis when cells detach from the extracellular matrix. During mitosis, FAK becomes heavily phosphorylated on serine residues concomitant with its inactivation and dephosphorylation on tyrosine. Little is known about the regulation of FAK activity by serine phosphorylation. In this report, we characterize two novel sites of serine phosphorylation within the C-terminal domain of FAK. Phosphorylation-specific antibodies directed to these sites and against two previously characterized sites of serine phosphorylation were used to study the regulated phosphorylation of FAK in unsynchronized and mitotic cells. Among the four major phosphorylation sites, designated pS1-pS4, phosphorylation of pS1 (Ser722) is unchanged in unsynchronized and mitotic cells. In contrast, pS3 and pS4 (Ser843 and Ser910) exhibit increased phosphorylation during mitosis. In vitro peptide binding experiments provide evidence that phosphorylation of pS1 (Ser722) may play a role in modulating FAK binding to the SH3 domain of the adapter protein p130Cas.