993 resultados para problem posing
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimize the makespan, provided that preemption is not allowed and the interstage transportation times are involved. This problem is known to be unary NP-hard. We present an algorithm that requires O (n log n) time and provides a worst-case performance ratio of 3/2.
Resumo:
We motivate, derive, and implement a multilevel approach to the travelling salesman problem.The resulting algorithm progressively coarsens the problem, initialises a tour, and then employs either the Lin-Kernighan (LK) or the Chained Lin-Kernighan (CLK) algorithm to refine the solution on each of the coarsened problems in reverse order.In experiments on a well-established test suite of 80 problem instances we found multilevel configurations that either improved the tour quality by over 25% as compared to the standard CLK algorithm using the same amount of execution time, or that achieved approximately the same tour quality over seven times more rapidly. Moreover, the multilevel variants seem to optimise far better the more clustered instances with which the LK and CLK algorithms have the most difficulties.
Resumo:
Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.
Resumo:
We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.
Resumo:
Multilevel approaches to computational problems are pervasive across many areas of applied mathematics and scientific computing. The multilevel paradigm uses recursive coarsening to create a hierarchy of approximations to the original problem, then an initial solution is found for the coarsest problem and iteratively refined and improved at each level, coarsest to finest. The solution process is aided by the global perspective (or `global view') imparted to the optimisation by the coarsening. This paper looks at their application to the Vehicle Routing Problem.
Resumo:
We develop a fully polynomial-time approximation scheme (FPTAS) for minimizing the weighted total tardiness on a single machine, provided that all due dates are equal. The FPTAS is obtained by converting an especially designed pseudopolynomial dynamic programming algorithm.
Resumo:
This paper presents a simple approach to the so-called frame problem based on some ordinary set operations, which does not require non-monotonic reasoning. Following the notion of the situation calculus, we shall represent a state of the world as a set of fluents, where a fluent is simply a Boolean-valued property whose truth-value is dependent on the time. High-level causal laws are characterised in terms of relationships between actions and the involved world states. An effect completion axiom is imposed on each causal law, which guarantees that all the fluents that can be affected by the performance of the corresponding action are always totally governed. It is shown that, compared with other techniques, such a set operation based approach provides a simpler and more effective treatment to the frame problem.
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL algorithm, which uses a combination of standard VRP heuristics, is developed first to solve instances of the VRP. A ML version, which extends the global view of these heuristics, is then created, using variants of the construction and improvement heuristics at each level. Finally some multilevel enhancements are developed. Experimentation is used to find suitable parameter settings and the final version is tested on two well-known VRP benchmark suites. Results comparing both SL and ML algorithms are presented.
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL heuristic, termed the combined node-exchange composite heuristic (CNCH), is developed first to solve instances of the VRP. A ML version (the ML-CNCH) is then created, using the construction and improvement heuristics of the CNCH at each level. Experimentation is used to find a suitable combination, which extends the global view of these heuristics. Results comparing both SL and ML are presented.
Resumo:
We consider the problem of scheduling families of jobs in a two-machine open shop so as to minimize the makespan. The jobs of each family can be partitioned into batches and a family setup time on each machine is required before the first job is processed, and when a machine switches from processing a job of some family to a job of another family. For this NP-hard problem the literature contains (5/4)-approximation algorithms that cannot be improved on using the class of group technology algorithms in which each family is kept as a single batch. We demonstrate that there is no advantage in splitting a family more than once. We present an algorithm that splits one family at most once on a machine and delivers a worst-case performance ratio of 6/5.
Resumo:
This paper presents two multilevel refinement algorithms for the capacitated clustering problem. Multilevel refinement is a collaborative technique capable of significantly aiding the solution process for optimisation problems. The central methodologies of the technique are filtering solutions from the search space and reducing the level of problem detail to be considered at each level of the solution process. The first multilevel algorithm uses a simple tabu search while the other executes a standard local search procedure. Both algorithms demonstrate that the multilevel technique is capable of aiding the solution process for this combinatorial optimisation problem.
Resumo:
This paper presents primary data based on research carried out as part of a large World Bank project. Results from our survey show that water pollution in Dhaka watershed has reached alarming levels and is posing significant threats to health and economic activity, particularly among the poor and vulnerable. Rice productivity in the watershed area, for example, has declined by 40% in recent years and vegetable cultivation in the riverbeds has been severely damaged. We also found significant correlation between water pollution and diseases such as jaundice, diarrhoea and skin problems. It was reported that the cost of treatment of skin diseases for one episode could be as high as 29% of the weekly earnings of poor households. Given the magnitude of the contamination problem, a multi-agent stakeholder approach was necessary to analyse the institutional and economic constraints that would need to be addressed in order to improve environmental management. This approach, in turn, enabled core strategies to be developed. The strategies were better understood around three types of actors in industrial pollution, i.e. (1) principal actors, who contribute directly to industrial pollution; (2) stakeholders, who exacerbate the situation by inaction; and (3) the potential actors in mitigation of water contamination. Within a carrot-and-stick framework, nine strategies leading to the strengthening of environmental management were explored. They aim at improving governance and transparency within public agencies and private industry through the setting up of incentive structures to advance compliance and enforcement of environmental standards. Civil society and the population at large are, on the other hand, encouraged to contribute actively to the mitigation of water pollution by improving the management of environmental information and by raising public awareness.