996 resultados para polarization direction
Resumo:
We numerically study nonreciprocal regimes of surface plasmon-polariton at the interface between two gyrotropic media. We predict existence of isolated unidirectional TE and TM surface modes guided by the interface between gyroelectric and gyromagnetic media.
Resumo:
Linearly polarized solitary waves, arising from the interaction of an intense laser pulse with a plasma, are investigated. Localized structures, in the form of exact numerical nonlinear solutions of the one-dimensional Maxwell-fluid model for a cold plasma with fixed ions, are presented. Unlike stationary circularly polarized solitary waves, the linear polarization gives rise to a breather-type behavior and a periodic exchange of electromagnetic energy and electron kinetic energy at twice the frequency of the wave. A numerical method based on a finite-differences scheme allows us to compute a branch of solutions within the frequency range Ωmin<Ω<ωpe, where ωpe and Ωmin are the electron plasma frequency and the frequency value for which the plasma density vanishes locally, respectively. A detailed description of the spatiotemporal structure of the waves and their main properties as a function of Ω is presented. Small-amplitude oscillations appearing in the tail of the solitary waves, a consequence of the linear polarization and harmonic excitation, are explained with the aid of the Akhiezer-Polovin system. Direct numerical simulations of the Maxwell-fluid model show that these solitary waves propagate without change for a long time.
Resumo:
A spectroscopic study of the He-alpha (1s(2) S-1(0) - 1s2p P-1(1)) line emission (4749.73 eV) from high density plasma was conducted. The plasma was produced by irradiating Ti targets with intense (I approximate to 1x10(19) W/cm(2)), 400nm wavelength high contrast, short (45fs) p-polarized laser pulses at an angle of 45 degrees. A line shift up to 3.4 +/- 1.0 eV (1.9 +/- 0.55 m angstrom) was observed in the He-alpha line. The line width of the resonance line at FWHM was measured to be 12.1 +/- 0.6 eV (6.7 +/- 0.35 m angstrom). For comparison, we looked into the emission of the same spectral line from plasma produced by irradiating the same target with laser pulses of reduced intensities (approximate to 10(17) W/cm(2)): we observed a spectral shift of only 1.8 +/- 1.0 eV (0.9 +/- 0.55m angstrom) and the line-width measures up to 5.8 +/- 0.25 eV (2.7 +/- 0.35 m angstrom). These data provide evidence of plasma polarization shift of the Ti He-alpha line.
Resumo:
The detailed knowledge of fast electron energy transport following interaction with high-intensity, ultra-short laser pulses is a key area for secondary source generation for ELI. We demonstrate polarization spectroscopy at laser intensities up to 10(21) Wcm(-2). This is significant as it suggests that in situ emission spectroscopy may be used as an effective probe of fast electron velocity distributions in regimes relevant to electron transport in solid targets. Ly-alpha doublet emission of nickel (Z = 28) and sulphur (Z = 16) is observed to measure the degree of polarization from the Ly-alpha(1) emission. Ly-alpha(2) emission is unpolarized, and as such acts as a calibration source between spectrometers. The measured ratio of the X-ray sigma- and pi-polarization allows the possibility to infer the velocity distribution function of the fast electron beam.
Resumo:
Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45 degrees determines the X-ray s- and p-polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 10(19) - 10(21) Wcm(-2). We observe at 45 degrees the Ly-alpha doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1(st) order for sulphur and 3(rd) order for nickel.
Resumo:
We present a Monte Carlo radiative transfer technique for calculating synthetic spectropolarimetry for multidimensional supernova explosion models. The approach utilizes 'virtual-packets' that are generated during the propagation of the Monte Carlo quanta and used to compute synthetic observables for specific observer orientations. Compared to extracting synthetic observables by direct binning of emergent Monte Carlo quanta, this virtual-packet approach leads to a substantial reduction in the Monte Carlo noise. This is not only vital for calculating synthetic spectropolarimetry (since the degree of polarization is typically very small) but also useful for calculations of light curves and spectra. We first validate our approach via application of an idealized test code to simple geometries. We then describe its implementation in the Monte Carlo radiative transfer code ARTIS and present test calculations for simple models for Type Ia supernovae. Specifically, we use the well-known one-dimensional W7 model to verify that our scheme can accurately recover zero polarization from a spherical model, and to demonstrate the reduction in Monte Carlo noise compared to a simple packet-binning approach. To investigate the impact of aspherical ejecta on the polarization spectra, we then use ARTIS to calculate synthetic observables for prolate and oblate ellipsoidal models with Type Ia supernova compositions.
Resumo:
A new class of polarizing surface is proposed that in a given frequency band can reflect incident linearly polarized waves with circular polarization (CP) while at other frequencies is transparent allowing incident waves to transmit unaffected. The proposed structure consists of two parallel anisotropic frequency selective surfaces (FSSs) that independently interact with TE or TM waves, respectively. The FSSs are designed to, respectively, transmit TE and TM waves within the same transmission frequency range, so that the combined structure is transparent to all polarizations in this band. Likewise, the two arrays are designed to, respectively, reflect TE and TM incident waves in a common reflection band, so that all polarizations are fully reflected in this range; if the separation of the two arrays is such that the TE and TM components of an incident wave polarized at slant 45° experience a 90° phase shift, reflection will occur in CP. The concept and performance limitations are theoretically investigated using transmission line theory as well as full wave results. The predicted performance is validated by means of experimental results on a fabricated prototype. The proposed structure is pertinent for employment as a quasi-optical diplexer in CP dual-band systems such as reflector antennas.
Resumo:
The accumulation of biogenic greenhouse gases (methane, carbon dioxide) in organic sediments is an important factor in the redevelopment and risk management of many brownfield sites. Good practice with brownfield site characterization requires the identification of free-gas phases and pathways that allow its migration and release at the ground surface. Gas pockets trapped in the subsurface have contrasting properties with the surrounding porous media that favor their detection using geophysical methods. We have developed a case study in which pockets of gas were intercepted with multilevel monitoring wells, and their lateral continuity was monitored over time using resistivity. We have developed a novel interpretation procedure based on Archie’s law to evaluate changes in water and gas content with respect to a mean background medium. We have used induced polarization data to account for errors in applying Archie’s law due to the contribution of surface conductivity effects. Mosaics defined by changes in water saturation allowed the recognition of gas migration and groundwater infiltration routes and the association of gas and groundwater fluxes. The inference on flux patterns was analyzed by taking into account pressure measurements in trapped gas reservoirs and by metagenomic analysis of the microbiological content, which was retrieved from suspended sediments in groundwater sampled in multilevel monitoring wells. A conceptual model combining physical and microbiological subsurface processes suggested that biogas trapped at depth may have the ability to quickly travel to the surface.
Resumo:
This article examines the influence on the engineering design process of the primary objective of validation, whether it is proving a model, a technology or a product. Through the examination of a number of stiffened panel case studies, the relationships between simulation, validation, design and the final product are established and discussed. The work demonstrates the complex interactions between the original (or anticipated) design model, the analysis model, the validation activities and the product in service. The outcome shows clearly some unintended consequences. High fidelity validation test simulations require a different set of detailed parameters to accurately capture behaviour. By doing so, there is a divergence from the original computer-aided design model, intrinsically limiting the value of the validation with respect to the product. This work represents a shift from the traditional perspective of encapsulating and controlling errors between simulation and experimental test to consideration of the wider design-test process. Specifically, it is a reflection on the implications of how models are built and validated, and the effect on results and understanding of structural behaviour. This article then identifies key checkpoints in the design process and how these should be used to update the computer-aided design system parameters for a design. This work strikes at a fundamental challenge in understanding the interaction between design, certification and operation of any complex system.
Resumo:
Objective
To determine the optimal transcranial magnetic stimulation (TMS) coil direction for inducing motor responses in the tongue in a group of non-neurologically impaired participants.
Methods
Single-pulse TMS was delivered using a figure-of-eight Magstim 2002 TMS coil. Study 1 investigated the effect of eight different TMS coil directions on the motor-evoked potentials elicited in the tongue in eight adults. Study 2 examined active motor threshold levels at optimal TMS coil direction compared to a customarily-used ventral-caudal direction. Study 3 repeated the procedure of Study 1 at five different sites across the tongue motor cortex in one adult.
Results
Inter-individual variability in optimal direction was observed, with an optimal range of directions determined for the group. Active motor threshold was reduced when a participant's own optimal TMS coil direction was used compared to the ventral-caudal direction. A restricted range of optimal directions was identified across the five cortical positions tested.
Conclusions
There is a need to identify each individual's own optimal TMS coil direction in investigating tongue motor cortex function. A recommended procedure for determining optimal coil direction is described.
Significance
Optimized TMS procedures are needed so that TMS can be utilized in determining the underlying neurophysiological basis of various motor speech disorders.
Resumo:
In a recent study, Greif et al. (2014) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed to a 90° rotated band of polarized light during dusk, would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration.
Resumo:
Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.
Resumo:
This paper uses a novel identification strategy to test the influence of news media on the stock market. Because the stock market does not impact the media coverage of the housing market, a relationship between real-estate news and shares of companies engaged in the housing market is attributable media influence. I find that the content of reporting exhibits a significant relationship with stock returns, and the amount of news with the number of trades. These relationships exist even after controlling for known risk factors, housing market performance and intra-week correlation. This finding is consistent with the function of the media as a source of information and sentiment in financial markets.